Menu Close

Question-49014




Question Number 49014 by peter frank last updated on 01/Dec/18
Commented by peter frank last updated on 01/Dec/18
7b 8a 8b
$$\mathrm{7b}\:\mathrm{8a}\:\mathrm{8b} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Dec/18
7b)total surface arra of cone  =curved suface area+circular base area  =πrl+πr^2   =πr(l+r)  =π((d/2))(l+(d/2))  =π((d/2))×(d/2)(1+l×(2/d))  =π((d^2 /4))(1+((2l)/d))    proof ..  curved surface area of cone=πrl  if you cut cone you get a semi circle..  slant height of cone becomes the radius of  semicircle  so l=r_(circle)   2πr_(cone) =πr_(circle)   2r_(cone ) =r_(circle)   area of semicircle=slant surface area of cone  ((πr_(circle) ^2 )/2)=slan surface area of cone  =((πr_(circle) ×r_(circle) )/2)  =((π×2r_(cone) ×l)/2)  =((π×d_(cone) ×l)/2)  pls wait i am attaching picture...
$$\left.\mathrm{7}{b}\right){total}\:{surface}\:{arra}\:{of}\:{cone} \\ $$$$={curved}\:{suface}\:{area}+{circular}\:{base}\:{area} \\ $$$$=\pi{rl}+\pi{r}^{\mathrm{2}} \\ $$$$=\pi{r}\left({l}+{r}\right) \\ $$$$=\pi\left(\frac{{d}}{\mathrm{2}}\right)\left({l}+\frac{{d}}{\mathrm{2}}\right) \\ $$$$=\pi\left(\frac{{d}}{\mathrm{2}}\right)×\frac{{d}}{\mathrm{2}}\left(\mathrm{1}+{l}×\frac{\mathrm{2}}{{d}}\right) \\ $$$$=\pi\left(\frac{{d}^{\mathrm{2}} }{\mathrm{4}}\right)\left(\mathrm{1}+\frac{\mathrm{2}{l}}{{d}}\right) \\ $$$$ \\ $$$${proof}\:.. \\ $$$${curved}\:{surface}\:{area}\:{of}\:{cone}=\pi{rl} \\ $$$${if}\:{you}\:{cut}\:{cone}\:{you}\:{get}\:{a}\:{semi}\:{circle}.. \\ $$$${slant}\:{height}\:{of}\:{cone}\:{becomes}\:{the}\:{radius}\:{of} \\ $$$${semicircle} \\ $$$${so}\:{l}={r}_{{circle}} \\ $$$$\mathrm{2}\pi{r}_{{cone}} =\pi{r}_{{circle}} \\ $$$$\mathrm{2}{r}_{{cone}\:} ={r}_{{circle}} \\ $$$${area}\:{of}\:{semicircle}={slant}\:{surface}\:{area}\:{of}\:{cone} \\ $$$$\frac{\pi{r}_{{circle}} ^{\mathrm{2}} }{\mathrm{2}}={slan}\:{surface}\:{area}\:{of}\:{cone} \\ $$$$=\frac{\pi{r}_{{circle}} ×{r}_{{circle}} }{\mathrm{2}} \\ $$$$=\frac{\pi×\mathrm{2}{r}_{{cone}} ×{l}}{\mathrm{2}} \\ $$$$=\frac{\pi×{d}_{{cone}} ×{l}}{\mathrm{2}} \\ $$$${pls}\:{wait}\:{i}\:{am}\:{attaching}\:{picture}… \\ $$$$ \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 01/Dec/18
Commented by peter frank last updated on 01/Dec/18
thank you very much sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{sir} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Dec/18
8a)πr^2 h−(1/3)πr^2 h
$$\left.\mathrm{8}{a}\right)\pi{r}^{\mathrm{2}} {h}−\frac{\mathrm{1}}{\mathrm{3}}\pi{r}^{\mathrm{2}} {h} \\ $$
Commented by peter frank last updated on 01/Dec/18
am getting r=1.6229 am i correct?
$$\mathrm{am}\:\mathrm{getting}\:\mathrm{r}=\mathrm{1}.\mathrm{6229}\:\mathrm{am}\:\mathrm{i}\:\mathrm{correct}? \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 01/Dec/18
in question 8a) no dimension is given in  figure ...so no comments...
$$\left.{in}\:{question}\:\mathrm{8}{a}\right)\:{no}\:{dimension}\:{is}\:{given}\:{in} \\ $$$${figure}\:…{so}\:{no}\:{comments}… \\ $$
Commented by peter frank last updated on 01/Dec/18
okay sir thanks
$$\mathrm{okay}\:\mathrm{sir}\:\mathrm{thanks} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Dec/18
8b)total surface area of cylinder  2πrh+πr^2 +πr^2   2πr(h+r)  C_(b ) (h+r)  [C_b =2πr]  2πrh→curved surface area  πr^2 +πr^2 →for two circular area
$$\left.\mathrm{8}{b}\right){total}\:{surface}\:{area}\:{of}\:{cylinder} \\ $$$$\mathrm{2}\pi{rh}+\pi{r}^{\mathrm{2}} +\pi{r}^{\mathrm{2}} \\ $$$$\mathrm{2}\pi{r}\left({h}+{r}\right) \\ $$$${C}_{{b}\:} \left({h}+{r}\right)\:\:\left[{C}_{{b}} =\mathrm{2}\pi{r}\right] \\ $$$$\mathrm{2}\pi{rh}\rightarrow{curved}\:{surface}\:{area} \\ $$$$\pi{r}^{\mathrm{2}} +\pi{r}^{\mathrm{2}} \rightarrow{for}\:{two}\:{circular}\:{area} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *