Menu Close

Question-49093




Question Number 49093 by peter frank last updated on 02/Dec/18
Answered by tanmay.chaudhury50@gmail.com last updated on 02/Dec/18
12)Normal reaction N=5×10=50N  limiting friction f_L =0.42×50=21N  kinetic friction f_k =0.15×50=7.5 N  a)applied force=15N<(f_L =21N)  so frictional force also 15N  net force=15N−15N=0  hence accelaration is zero  b)applied force 25N>(f_L =21N)  net force=25N−7.5N  acc=((17.5)/5)=3.5meter/sec^2
$$\left.\mathrm{12}\right){Normal}\:{reaction}\:{N}=\mathrm{5}×\mathrm{10}=\mathrm{50}{N} \\ $$$${limiting}\:{friction}\:{f}_{{L}} =\mathrm{0}.\mathrm{42}×\mathrm{50}=\mathrm{21}{N} \\ $$$${kinetic}\:{friction}\:{f}_{{k}} =\mathrm{0}.\mathrm{15}×\mathrm{50}=\mathrm{7}.\mathrm{5}\:{N} \\ $$$$\left.{a}\right){applied}\:{force}=\mathrm{15}{N}<\left({f}_{{L}} =\mathrm{21}{N}\right) \\ $$$${so}\:{frictional}\:{force}\:{also}\:\mathrm{15}{N} \\ $$$${net}\:{force}=\mathrm{15}{N}−\mathrm{15}{N}=\mathrm{0} \\ $$$${hence}\:{accelaration}\:{is}\:{zero} \\ $$$$\left.{b}\right){applied}\:{force}\:\mathrm{25}{N}>\left({f}_{{L}} =\mathrm{21}{N}\right) \\ $$$${net}\:{force}=\mathrm{25}{N}−\mathrm{7}.\mathrm{5}{N} \\ $$$${acc}=\frac{\mathrm{17}.\mathrm{5}}{\mathrm{5}}=\mathrm{3}.\mathrm{5}{meter}/{sec}^{\mathrm{2}} \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 02/Dec/18
13)normal reaction=42×10=420N  limiting friction f_L =420×0.44=184.8  let accelation is a so pseudo force on refrigerator  is  42a  when 42a≤184.8 the refrigerator will not slide  so a≤((184.8)/(42))  a≤4.4meter/sec^2  is pickup accelaration  pls check...
$$\left.\mathrm{13}\right){normal}\:{reaction}=\mathrm{42}×\mathrm{10}=\mathrm{420}{N} \\ $$$${limiting}\:{friction}\:{f}_{{L}} =\mathrm{420}×\mathrm{0}.\mathrm{44}=\mathrm{184}.\mathrm{8} \\ $$$${let}\:{accelation}\:{is}\:{a}\:{so}\:{pseudo}\:{force}\:{on}\:{refrigerator} \\ $$$${is}\:\:\mathrm{42}{a} \\ $$$${when}\:\mathrm{42}{a}\leqslant\mathrm{184}.\mathrm{8}\:{the}\:{refrigerator}\:{will}\:{not}\:{slide} \\ $$$${so}\:{a}\leqslant\frac{\mathrm{184}.\mathrm{8}}{\mathrm{42}} \\ $$$${a}\leqslant\mathrm{4}.\mathrm{4}{meter}/{sec}^{\mathrm{2}} \:{is}\:{pickup}\:{accelaration} \\ $$$${pls}\:{check}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *