Menu Close

Question-49183




Question Number 49183 by ajfour last updated on 04/Dec/18
Commented by ajfour last updated on 04/Dec/18
Find       ((Area △PQR)/(Area △ABC))  , if centroid G  of △ABC lies on z axis and each  vertex on surface of paraboloid.
FindAreaPQRAreaABC,ifcentroidGofABCliesonzaxisandeachvertexonsurfaceofparaboloid.
Commented by mr W last updated on 04/Dec/18
does ΔABC have given side lengthes  a,b,c?
doesΔABChavegivensidelengthesa,b,c?
Commented by ajfour last updated on 04/Dec/18
yes sir!
yessir!
Answered by mr W last updated on 05/Dec/18
z=kr^2  with k=1    lengthes of medians of ΔABC:  AG=(2/3)m_a =g_a =((√(2(b^2 +c^2 )−a^2 ))/3)  BG=(2/3)m_b =g_b =((√(2(c^2 +a^2 )−b^2 ))/3)  CG=(2/3)m_c =g_c =((√(2(a^2 +b^2 )−c^2 ))/3)  let z_G =h  let z_A =z_G +AG sin α=h+g_a  sin α  let z_B =z_G +BG sin β=h+g_b  sin β  we have three unknowns: h,α,β.  r_A =AG cos α=g_a  cos α  r_B =BG cos β=g_b  cos β  z_A =kr_A ^2   ⇒h+g_a  sin α=kg_a ^2  cos^2  α  ⇒sin^2  α+(1/(kg_a )) sin α+(h/(kg_a ^2 ))−1=0  ...(i)  similarly  ⇒sin^2  β+(1/(kg_b )) sin β+(h/(kg_b ^2 ))−1=0  ...(ii)  ⇒sin^2  γ+(1/(kg_c )) sin γ+(h/(kg_c ^2 ))−1=0  z_(B′) =z_G −B′G sin β=h−(1/3)m_b  sin β  z_(B′) =(1/2)(z_A +z_C )  z_C =2z_(B′) −z_A =2h−(2/3)m_b  sin β−h−(2/3)m_a  sin α  ⇒z_C =h−(2/3)(m_a  sin α+m_b  sin β)  z_C =h+(2/3)m_c  sin γ  ⇒(2/3)m_c  sin γ=−(2/3)(m_a  sin α+m_b  sin β)  ⇒ sin γ=−(1/g_c )(g_a  sin α+g_b  sin β)  ⇒k(g_a  sin α+g_b  sin β)^2 −(g_a  sin α+g_b  sin β)+h−kg_c ^2 =0   ...(iii)    from (i) and (ii):  k(g_a ^2 sin^2  α−g_b ^2 sin^2  β)+(g_a sin α−g_b sin β)−k(g_a ^2 −g_b ^2 )=0  (1+kg_a sin α+kg_b sin β)(g_a sin α−g_b sin β)=k(g_a ^2 −g_b ^2 )  from (i) and (iii):  k[g_a ^2 sin^2  α−(g_a  sin α+g_b  sin β)^2 ]+[g_a sin α+(g_a  sin α+g_b  sin β)]−k(g_a ^2 −g_c ^2 )=0  (1−kg_b  sin β)(2g_a sin α+g_b  sin β)=k(g_a ^2 −g_c ^2 )  we can solve (nummerically)   { ((((1/k)+g_a sin α+g_b sin β)(g_a sin α−g_b sin β)=g_a ^2 −g_b ^2 )),((((1/k)−g_b  sin β)(2g_a sin α+g_b  sin β)=g_a ^2 −g_c ^2 )) :}  for sin α and sin β.  note: there can be more than one  solution!  with sin α and sin β we get sin γ from  g_a  sin α+g_b  sin β+g_c sin γ=0    let e_a ,e_b ,e_c =projection of AG,BG,CG  e_a =g_a  cos α=g_a (√(1−sin^2  α))  e_b =g_b  cos β=g_b (√(1−sin^2  β))  e_c =g_c  cos γ=g_c (√(1−sin^2  γ))  Δ_(PQR) =((3(√((e_a +e_b +e_c )(−e_a +e_b +e_c )(e_a −e_b +e_c )(e_a +e_b −e_c ))))/4)  Δ_(ABC) =((√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))/4)  (Δ_(PQR) /Δ_(ABC) )=((3(√((e_a +e_b +e_c )(−e_a +e_b +e_c )(e_a −e_b +e_c )(e_a +e_b −e_c ))))/( (√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))))
z=kr2withk=1lengthesofmediansofΔABC:AG=23ma=ga=2(b2+c2)a23BG=23mb=gb=2(c2+a2)b23CG=23mc=gc=2(a2+b2)c23letzG=hletzA=zG+AGsinα=h+gasinαletzB=zG+BGsinβ=h+gbsinβwehavethreeunknowns:h,α,β.rA=AGcosα=gacosαrB=BGcosβ=gbcosβzA=krA2h+gasinα=kga2cos2αsin2α+1kgasinα+hkga21=0(i)similarlysin2β+1kgbsinβ+hkgb21=0(ii)sin2γ+1kgcsinγ+hkgc21=0zB=zGBGsinβ=h13mbsinβzB=12(zA+zC)zC=2zBzA=2h23mbsinβh23masinαzC=h23(masinα+mbsinβ)zC=h+23mcsinγ23mcsinγ=23(masinα+mbsinβ)sinγ=1gc(gasinα+gbsinβ)k(gasinα+gbsinβ)2(gasinα+gbsinβ)+hkgc2=0(iii)from(i)and(ii):k(ga2sin2αgb2sin2β)+(gasinαgbsinβ)k(ga2gb2)=0(1+kgasinα+kgbsinβ)(gasinαgbsinβ)=k(ga2gb2)from(i)and(iii):k[ga2sin2α(gasinα+gbsinβ)2]+[gasinα+(gasinα+gbsinβ)]k(ga2gc2)=0(1kgbsinβ)(2gasinα+gbsinβ)=k(ga2gc2)wecansolve(nummerically){(1k+gasinα+gbsinβ)(gasinαgbsinβ)=ga2gb2(1kgbsinβ)(2gasinα+gbsinβ)=ga2gc2forsinαandsinβ.note:therecanbemorethanonesolution!withsinαandsinβwegetsinγfromgasinα+gbsinβ+gcsinγ=0letea,eb,ec=projectionofAG,BG,CGea=gacosα=ga1sin2αeb=gbcosβ=gb1sin2βec=gccosγ=gc1sin2γΔPQR=3(ea+eb+ec)(ea+eb+ec)(eaeb+ec)(ea+ebec)4ΔABC=(a+b+c)(a+b+c)(ab+c)(a+bc)4ΔPQRΔABC=3(ea+eb+ec)(ea+eb+ec)(eaeb+ec)(ea+ebec)(a+b+c)(a+b+c)(ab+c)(a+bc)
Commented by mr W last updated on 04/Dec/18
Commented by ajfour last updated on 06/Dec/18
Thanks sir! and sorry for such  not so interesting question..
Thankssir!andsorryforsuchnotsointerestingquestion..
Commented by mr W last updated on 06/Dec/18
but it is an interesting question. what  is the reason for the restriction that  the centroid should lie on z−axix?   with this restriction not every triangle  can be placed inside the cup, for  example a triangle with sides 3,4,5.
butitisaninterestingquestion.whatisthereasonfortherestrictionthatthecentroidshouldlieonzaxix?withthisrestrictionnoteverytrianglecanbeplacedinsidethecup,forexampleatrianglewithsides3,4,5.

Leave a Reply

Your email address will not be published. Required fields are marked *