Menu Close

Question-49252




Question Number 49252 by cesar.marval.larez@gmail.com last updated on 04/Dec/18
Answered by kaivan.ahmadi last updated on 05/Dec/18
★b  f′(x)=2tg(sec(cos5x−3))(1+tg^2 (sec(cos(5x−3))))(sec(cos(5x−3)))^′ =  on the other hand  (sec(cos(5x−3)))′=sec(cos(5x−3))tg(cos(5x−3)).(−5sin(5x−3))
$$\bigstar\mathrm{b} \\ $$$$\mathrm{f}'\left(\mathrm{x}\right)=\mathrm{2tg}\left(\mathrm{sec}\left(\mathrm{cos5x}−\mathrm{3}\right)\right)\left(\mathrm{1}+\mathrm{tg}^{\mathrm{2}} \left(\mathrm{sec}\left(\mathrm{cos}\left(\mathrm{5x}−\mathrm{3}\right)\right)\right)\right)\left(\mathrm{sec}\left(\mathrm{cos}\left(\mathrm{5x}−\mathrm{3}\right)\right)\right)^{'} = \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{other}\:\mathrm{hand} \\ $$$$\left(\mathrm{sec}\left(\mathrm{cos}\left(\mathrm{5x}−\mathrm{3}\right)\right)\right)'=\mathrm{sec}\left(\mathrm{cos}\left(\mathrm{5x}−\mathrm{3}\right)\right)\mathrm{tg}\left(\mathrm{cos}\left(\mathrm{5x}−\mathrm{3}\right)\right).\left(−\mathrm{5sin}\left(\mathrm{5x}−\mathrm{3}\right)\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *