Question-49279 Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 49279 by Tawa1 last updated on 05/Dec/18 Commented by MJS last updated on 05/Dec/18 x−4=u2x−5=vu2017+u2015+u=−(v2017+v2015+v)⇒v=−u⇔u+v=03x−9=0x=3wecanputun+un−2+u+vn+vn−2+v=0andtestforn=2k+1;k∈N★ifu2k+1+u2k−1+u+v2k+1+v2k−1+v=0hasgotrealsolutionsItestedfork={1,2,3,4,5}andfoundnorealsolutionsexceptv=−ubutIcan′tproveit Answered by afachri last updated on 05/Dec/18 ithinkthefirstsolutionis:(2x−5)+(x−4)+(2x−5)+(x−4)+3x−9=09x−27=0⇒x=3checkifx=3:(2x−5)2017+(x−4)2017+(2x−5)2015+(x−4)2015+(3x−9)=012017+(−1)2017+12015+(−1)2015+0=01−1+1−1+0=0ihavenoideasaboutanyothersolution.iamjustarookieone.pleasecorrectmegentlyifi′mwrongandteachmeplease. Answered by tanmay.chaudhury50@gmail.com last updated on 05/Dec/18 f(x)=(2x−5)2017+(2x−5)2015+2x−5+(x−4)2017+(x−4)2015+(x−4)criticalvalue52and4f(x)<0atx=2.5f(x)>0atx=4sofromx=2.5tox=4signoff(x)changessoonerootofxmustliebetween2.5to4nowputx=3f(x)=0sox=3 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-180348Next Next post: Question-49283 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.