Menu Close

Question-49279




Question Number 49279 by Tawa1 last updated on 05/Dec/18
Commented by MJS last updated on 05/Dec/18
x−4=u  2x−5=v  u^(2017) +u^(2015) +u=−(v^(2017) +v^(2015) +v)  ⇒ v=−u ⇔ u+v=0  3x−9=0  x=3  we can put  u^n +u^(n−2) +u+v^n +v^(n−2) +v=0  and test for n=2k+1; k∈N^★  if  u^(2k+1) +u^(2k−1) +u+v^(2k+1) +v^(2k−1) +v=0  has got real solutions  I tested for k={1, 2, 3, 4, 5} and found no  real solutions except v=−u  but I can′t prove it
x4=u2x5=vu2017+u2015+u=(v2017+v2015+v)v=uu+v=03x9=0x=3wecanputun+un2+u+vn+vn2+v=0andtestforn=2k+1;kNifu2k+1+u2k1+u+v2k+1+v2k1+v=0hasgotrealsolutionsItestedfork={1,2,3,4,5}andfoundnorealsolutionsexceptv=ubutIcantproveit
Answered by afachri last updated on 05/Dec/18
     i think the first solution is :        (2x − 5) + (x−4) + (2x − 5) + (x − 4) + 3x − 9 = 0                        9x − 27 = 0     ⇒    x = 3  check if x = 3 :     (2x − 5)^(2017) +  (x − 4)^(2017) +  (2x − 5)^(2015) +  (x − 4)^(2015)  +  (3x − 9) =  0           1^(2017)          +  (−1)^(2017)      +       1^(2015)      +    (−1)^(2015)  + 0 =   0           1 − 1 + 1 − 1 + 0 = 0  i have no ideas about any other solution.   i am just a rookie one. please correct me gently if   i′m wrong and teach me please.
ithinkthefirstsolutionis:(2x5)+(x4)+(2x5)+(x4)+3x9=09x27=0x=3checkifx=3:(2x5)2017+(x4)2017+(2x5)2015+(x4)2015+(3x9)=012017+(1)2017+12015+(1)2015+0=011+11+0=0ihavenoideasaboutanyothersolution.iamjustarookieone.pleasecorrectmegentlyifimwrongandteachmeplease.
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Dec/18
f(x)=(2x−5)^(2017) +(2x−5)^(2015) +2x−5+(x−4)^(2017) +(x−4)^(2015) +(x−4)  critical value (5/2) and 4  f(x)<0  at x=2.5  f(x)>0 at x=4  so from x=2.5  to x=4 sign of f(x) changes  so one root of x must lie between 2.5 to 4  now put x=3  f(x)=0   so x=3
f(x)=(2x5)2017+(2x5)2015+2x5+(x4)2017+(x4)2015+(x4)criticalvalue52and4f(x)<0atx=2.5f(x)>0atx=4sofromx=2.5tox=4signoff(x)changessoonerootofxmustliebetween2.5to4nowputx=3f(x)=0sox=3

Leave a Reply

Your email address will not be published. Required fields are marked *