Menu Close

Question-49468




Question Number 49468 by munnabhai455111@gmail.com last updated on 07/Dec/18
Answered by tanmay.chaudhury50@gmail.com last updated on 07/Dec/18
O(0,0,0)  A(x_1 ,y_1 ,z_1 ) B(x_2 ,y_2 ,z_2 )  OA^→ =ix_1 +jy_1 +kz_1   OB^→ =ix_2 +jy_2 +kz_2   area of OAB=(1/2)∣OA^→ ×OC^→ ∣  OA^→ ×OB^→ =i(y_1 z_2 −y_2 z_1 )−i(x_1 z_2 −x_2 z_1 )+k(x_1 y_2 −x_2 y_1 )  so (1/2)∣OA^→ ×OB^→ ∣  =(1/2)(√((y_1 z_2 −y_2 z_1 )^2 +(x_1 z_2 −x_2 z_1 )^2 +(x_1 y_2 −x_2 y_1 )^2 ))
$${O}\left(\mathrm{0},\mathrm{0},\mathrm{0}\right)\:\:{A}\left({x}_{\mathrm{1}} ,{y}_{\mathrm{1}} ,{z}_{\mathrm{1}} \right)\:{B}\left({x}_{\mathrm{2}} ,{y}_{\mathrm{2}} ,{z}_{\mathrm{2}} \right) \\ $$$${O}\overset{\rightarrow} {{A}}={ix}_{\mathrm{1}} +{jy}_{\mathrm{1}} +{kz}_{\mathrm{1}} \\ $$$${O}\overset{\rightarrow} {{B}}={ix}_{\mathrm{2}} +{jy}_{\mathrm{2}} +{kz}_{\mathrm{2}} \\ $$$${area}\:{of}\:{OAB}=\frac{\mathrm{1}}{\mathrm{2}}\mid{O}\overset{\rightarrow} {{A}}×{O}\overset{\rightarrow} {{C}}\mid \\ $$$${O}\overset{\rightarrow} {{A}}×{O}\overset{\rightarrow} {{B}}={i}\left({y}_{\mathrm{1}} {z}_{\mathrm{2}} −{y}_{\mathrm{2}} {z}_{\mathrm{1}} \right)−{i}\left({x}_{\mathrm{1}} {z}_{\mathrm{2}} −{x}_{\mathrm{2}} {z}_{\mathrm{1}} \right)+{k}\left({x}_{\mathrm{1}} {y}_{\mathrm{2}} −{x}_{\mathrm{2}} {y}_{\mathrm{1}} \right) \\ $$$${so}\:\frac{\mathrm{1}}{\mathrm{2}}\mid{O}\overset{\rightarrow} {{A}}×{O}\overset{\rightarrow} {{B}}\mid \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\left({y}_{\mathrm{1}} {z}_{\mathrm{2}} −{y}_{\mathrm{2}} {z}_{\mathrm{1}} \right)^{\mathrm{2}} +\left({x}_{\mathrm{1}} {z}_{\mathrm{2}} −{x}_{\mathrm{2}} {z}_{\mathrm{1}} \right)^{\mathrm{2}} +\left({x}_{\mathrm{1}} {y}_{\mathrm{2}} −{x}_{\mathrm{2}} {y}_{\mathrm{1}} \right)^{\mathrm{2}} }\: \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *