Question Number 49935 by ajfour last updated on 12/Dec/18
Commented by ajfour last updated on 12/Dec/18
$${Find}\:{maximum}\:{coloured}\:{area}\:{if} \\ $$$${l}=\:\mathrm{1}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 12/Dec/18
$${eqn}\:{of}\:{l}\:\:\:{y}−\mathrm{0}=\frac{{b}^{\mathrm{2}} −\mathrm{0}}{{b}−{a}}\left({x}−{a}\right) \\ $$$${y}=\frac{{b}^{\mathrm{2}} }{{b}−{a}}\left({x}−{a}\right) \\ $$$$\mathrm{1}=\sqrt{\left({b}−{a}\right)^{\mathrm{2}} +\left({b}^{\mathrm{2}} −\mathrm{0}\right)^{\mathrm{2}} }\:{A} \\ $$$${area}\:\int_{\mathrm{0}} ^{{b}} {x}^{\mathrm{2}} {dx}+\frac{{b}^{\mathrm{2}} }{{b}−{a}}\int_{{b}} ^{{a}} \left({x}−{a}\right){dx} \\ $$$${A}=\frac{{b}^{\mathrm{3}} }{\mathrm{3}}+\frac{{b}^{\mathrm{2}} }{{b}−{a}}\mid\left(\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−{ax}\right)\mid_{{b}} ^{{a}} \\ $$$$=\frac{{b}^{\mathrm{3}} }{\mathrm{3}}+\frac{{b}^{\mathrm{2}} }{{b}−{a}}\left\{\left(\frac{{a}^{\mathrm{2}} }{\mathrm{2}}−{a}^{\mathrm{2}} \right)−\left(\frac{{b}^{\mathrm{2}} }{\mathrm{2}}−{ab}\right)\right\} \\ $$$$=\frac{{b}^{\mathrm{3}} }{\mathrm{3}}+\frac{{b}^{\mathrm{2}} }{{b}−{a}}\left\{\frac{{a}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +\mathrm{2}{ab}}{\mathrm{2}}\right\} \\ $$$$=\frac{{b}^{\mathrm{3}} }{\mathrm{3}}+\frac{{b}^{\mathrm{2}} }{{b}−{a}}×\left\{\frac{−\left({b}−{a}\right)^{\mathrm{2}} }{\mathrm{2}}\right\} \\ $$$$=\frac{{b}^{\mathrm{3}} }{\mathrm{3}}−\frac{{b}^{\mathrm{2}} \left({b}−{a}\right)}{\mathrm{2}} \\ $$$$=\frac{\mathrm{2}{b}^{\mathrm{3}} −\mathrm{3}{b}^{\mathrm{3}} +\mathrm{3}{ab}^{\mathrm{2}} }{\mathrm{6}}=\frac{\mathrm{3}{ab}^{\mathrm{2}} −{b}^{\mathrm{3}} }{\mathrm{6}}=\frac{{b}^{\mathrm{2}} \left(\mathrm{3}{a}−{b}\right)}{\mathrm{6}} \\ $$$${now}\:\mathrm{1}=\left({b}−{a}\right)^{\mathrm{2}} +{b}^{\mathrm{4}} \\ $$$$\left({a}−{b}\right)^{\mathrm{2}} =\mathrm{1}−{b}^{\mathrm{4}} \\ $$$${a}={b}+\sqrt{\mathrm{1}−{b}^{\mathrm{4}} }\: \\ $$$${A}=\frac{{b}^{\mathrm{2}} }{\mathrm{6}}×\left(\mathrm{3}{b}+\mathrm{3}\sqrt{\mathrm{1}−{b}^{\mathrm{4}} }\:−{b}\right) \\ $$$$=\frac{{b}^{\mathrm{2}} }{\mathrm{6}}×\left(\mathrm{2}{b}+\mathrm{3}\sqrt{\mathrm{1}−{b}^{\mathrm{4}} }\:\right) \\ $$$$\frac{{dA}}{{db}}=\frac{{b}^{\mathrm{2}} }{\mathrm{6}}×\left\{\mathrm{2}+\frac{\mathrm{3}×−\mathrm{4}{b}^{\mathrm{3}} }{\mathrm{2}\sqrt{\mathrm{1}−{b}^{\mathrm{4}} }\:}\right\}+\frac{\mathrm{2}{b}}{\mathrm{6}}\left(\mathrm{2}{b}+\mathrm{3}\sqrt{\mathrm{1}−{b}^{\mathrm{4}} }\:\right) \\ $$$$\mathrm{0}={b}\left\{\mathrm{2}−\frac{\mathrm{6}{b}^{\mathrm{3}} }{\:\sqrt{\mathrm{1}−{b}^{\mathrm{4}} }\:}\right\}+\mathrm{4}{b}+\mathrm{6}\sqrt{\mathrm{1}−{b}^{\mathrm{4}} }\: \\ $$$$\mathrm{0}=\frac{\mathrm{2}{b}\sqrt{\mathrm{1}−{b}^{\mathrm{4}} }\:−\mathrm{6}{b}^{\mathrm{4}} +\mathrm{4}{b}\sqrt{\mathrm{1}−{b}^{\mathrm{4}} }\:+\mathrm{6}\left(\mathrm{1}−{b}^{\mathrm{4}} \right)}{} \\ $$$$\mathrm{6}{b}\sqrt{\mathrm{1}−{b}^{\mathrm{4}} }\:−\mathrm{12}{b}^{\mathrm{4}} +\mathrm{6}=\mathrm{0} \\ $$$${b}\sqrt{\mathrm{1}−{b}^{\mathrm{4}} }\:−\mathrm{2}{b}^{\mathrm{4}} +\mathrm{1}=\mathrm{0} \\ $$$${b}^{\mathrm{2}} \left(\mathrm{1}−{b}^{\mathrm{4}} \right)=\mathrm{4}{b}^{\mathrm{8}} −\mathrm{4}{b}^{\mathrm{4}} +\mathrm{1} \\ $$$$\mathrm{4}{b}^{\mathrm{8}} +{b}^{\mathrm{6}} −\mathrm{4}{b}^{\mathrm{4}} −{b}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$${to}\:{find}\:{b}…{wait}… \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by ajfour last updated on 12/Dec/18
$${Now}\:{its}\:{correct}\:{this}\:{far},\:{Sir}! \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 12/Dec/18
$${yes}\:{you}\:{are}\:{right}…{let}\:{me}\:{rectify} \\ $$
Commented by MJS last updated on 12/Dec/18
$$\mathrm{no}\:“\mathrm{beautiful}''\:\mathrm{solution}\:\mathrm{for}\:{b} \\ $$$${b}\approx.\mathrm{9266792684}\:\vee\:{b}\approx.\mathrm{6693949264} \\ $$$$\Rightarrow\:{a}\approx\mathrm{1}.\mathrm{439100107}\:\vee\:{a}\approx\mathrm{1}.\mathrm{563383595} \\ $$
Answered by mr W last updated on 12/Dec/18
$${eqn}.\:{of}\:{parabola}:\:{y}={cx}^{\mathrm{2}} \:{with}\:{c}=\mathrm{1} \\ $$$${from}\:\left({h},{k}\right)\:{to}\:\left({a},\mathrm{0}\right): \\ $$$${k}={ch}^{\mathrm{2}} \\ $$$$\left({a}−{h}\right)^{\mathrm{2}} +{k}^{\mathrm{2}} ={l}^{\mathrm{2}} \\ $$$${a}^{\mathrm{2}} −\mathrm{2}{ah}+{h}^{\mathrm{2}} +{c}^{\mathrm{2}} {h}^{\mathrm{4}} ={l}^{\mathrm{2}} \\ $$$$\mathrm{2}{a}\frac{{da}}{{dh}}−\mathrm{2}{h}\frac{{da}}{{dh}}−\mathrm{2}{a}+\mathrm{2}{h}+\mathrm{4}{c}^{\mathrm{2}} {h}^{\mathrm{3}} =\mathrm{0} \\ $$$$\Rightarrow\frac{{da}}{{dh}}=\mathrm{1}−\frac{\mathrm{2}{c}^{\mathrm{2}} {h}^{\mathrm{3}} }{{a}−{h}} \\ $$$$ \\ $$$${A}=\frac{{hk}}{\mathrm{3}}+\frac{\left({a}−{h}\right){k}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{6}}\left(\mathrm{3}{a}−{h}\right){ch}^{\mathrm{2}} \\ $$$$\frac{{d}\left(\mathrm{6}{A}/{c}\right)}{{dh}}=\mathrm{2}{h}\left(\mathrm{3}{a}−{h}\right)+{h}^{\mathrm{2}} \left(\mathrm{3}\frac{{da}}{{dh}}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\mathrm{2}\left(\mathrm{3}{a}−{h}\right)+{h}\left(\mathrm{3}\frac{{da}}{{dh}}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\frac{\mathrm{2}{a}}{{h}}+\frac{{da}}{{dh}}−\mathrm{1}=\mathrm{0} \\ $$$$\frac{\mathrm{2}{a}}{{h}}−\frac{\mathrm{2}{c}^{\mathrm{2}} {h}^{\mathrm{3}} }{{a}−{h}}=\mathrm{0} \\ $$$$\frac{{a}}{{h}}=\frac{{c}^{\mathrm{2}} {h}^{\mathrm{3}} }{{a}−{h}} \\ $$$${a}^{\mathrm{2}} −{ha}−{c}^{\mathrm{2}} {h}^{\mathrm{4}} =\mathrm{0} \\ $$$$\Rightarrow{a}=\frac{{h}}{\mathrm{2}}\left[\mathrm{1}+\sqrt{\mathrm{1}+\left(\mathrm{2}{ch}\right)^{\mathrm{2}} }\right] \\ $$$$ \\ $$$${a}^{\mathrm{2}} −\mathrm{2}{ah}+{h}^{\mathrm{2}} +{c}^{\mathrm{2}} {h}^{\mathrm{4}} ={l}^{\mathrm{2}} \\ $$$$\mathrm{4}{c}^{\mathrm{2}} {h}^{\mathrm{4}} +{h}^{\mathrm{2}} \left[\mathrm{1}−\sqrt{\mathrm{1}+\left(\mathrm{2}{ch}\right)^{\mathrm{2}} }\right]=\mathrm{2}{l}^{\mathrm{2}} \\ $$$$\mathrm{4}{c}^{\mathrm{2}} {h}^{\mathrm{2}} +\mathrm{1}−\sqrt{\mathrm{1}+\left(\mathrm{2}{ch}\right)^{\mathrm{2}} }=\frac{\mathrm{8}{c}^{\mathrm{2}} {l}^{\mathrm{2}} }{\mathrm{4}{c}^{\mathrm{2}} {h}^{\mathrm{2}} } \\ $$$${with}\:\lambda=\left(\mathrm{2}{ch}\right)^{\mathrm{2}} \\ $$$$\mathrm{1}+\lambda−\sqrt{\mathrm{1}+\lambda}=\frac{\mathrm{8}{c}^{\mathrm{2}} {l}^{\mathrm{2}} }{\lambda} \\ $$$${with}\:{c}=\mathrm{1},\:{l}=\mathrm{1} \\ $$$$\mathrm{1}+\lambda−\sqrt{\mathrm{1}+\lambda}=\frac{\mathrm{8}}{\lambda} \\ $$$${let}\:{t}=\sqrt{\mathrm{1}+\lambda} \\ $$$$\left({t}^{\mathrm{2}} −\mathrm{1}\right)\left({t}^{\mathrm{2}} −{t}\right)=\mathrm{8} \\ $$$${t}^{\mathrm{4}} −{t}^{\mathrm{3}} −{t}^{\mathrm{2}} +{t}−\mathrm{8}=\mathrm{0} \\ $$$$\Rightarrow\lambda=\mathrm{3}.\mathrm{4349} \\ $$$$\Rightarrow{h}=\frac{\sqrt{\lambda}}{\mathrm{2}}=\mathrm{0}.\mathrm{9267} \\ $$$$\Rightarrow{a}=\frac{\mathrm{0}.\mathrm{9267}}{\mathrm{2}}\left[\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{3}.\mathrm{4349}}\right]=\mathrm{1}.\mathrm{4391} \\ $$$$\Rightarrow{A}=\frac{\mathrm{1}}{\mathrm{6}}\left(\mathrm{3}×\mathrm{1}.\mathrm{4391}−\mathrm{0}.\mathrm{9267}\right)×\mathrm{0}.\mathrm{9267}^{\mathrm{2}} =\mathrm{0}.\mathrm{4853} \\ $$
Commented by ajfour last updated on 12/Dec/18
$${Thanks}\:{Sir},\:{beautiful}\:{way}! \\ $$