Menu Close

Question-49950




Question Number 49950 by ajfour last updated on 12/Dec/18
Commented by ajfour last updated on 12/Dec/18
  y = ∣(b/2)+bsin θ∣  , x = acos θ  Find area enclosed by the curve.
y=b2+bsinθ,x=acosθFindareaenclosedbythecurve.
Answered by MJS last updated on 12/Dec/18
y=(b/2)+(b/a)(√(a^2 −x^2 ))  y=0 ⇒ x=±((√3)/2)a  A=abπ+4∫_0 ^(((√3)/2)a) ((b/2)−(b/a)(√(a^2 −x^2 )))dx=((π/3)+((√3)/2))ab
y=b2+baa2x2y=0x=±32aA=abπ+432a0(b2baa2x2)dx=(π3+32)ab
Commented by ajfour last updated on 12/Dec/18
Thanks Sir, very precise!
ThanksSir,veryprecise!

Leave a Reply

Your email address will not be published. Required fields are marked *