Menu Close

Question-50460




Question Number 50460 by ajfour last updated on 16/Dec/18
Commented by ajfour last updated on 16/Dec/18
Find r in terms of R.
$${Find}\:\boldsymbol{{r}}\:{in}\:{terms}\:{of}\:\boldsymbol{{R}}. \\ $$
Commented by MJS last updated on 18/Dec/18
I solved this for 2 small circles with r=1 and  . a parabola y=ax^2   . a circle x^2 +(y−r)^2 =r^2   . an ellipse (x^2 /a^2 )+(((y−b)^2 )/b^2 )=1       [this one is tricky, will post soon]  will also try for a hyperbola
$$\mathrm{I}\:\mathrm{solved}\:\mathrm{this}\:\mathrm{for}\:\mathrm{2}\:\mathrm{small}\:\mathrm{circles}\:\mathrm{with}\:{r}=\mathrm{1}\:\mathrm{and} \\ $$$$.\:\mathrm{a}\:\mathrm{parabola}\:{y}={ax}^{\mathrm{2}} \\ $$$$.\:\mathrm{a}\:\mathrm{circle}\:{x}^{\mathrm{2}} +\left({y}−{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$.\:\mathrm{an}\:\mathrm{ellipse}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\left({y}−{b}\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\:\:\:\:\:\left[\mathrm{this}\:\mathrm{one}\:\mathrm{is}\:\mathrm{tricky},\:\mathrm{will}\:\mathrm{post}\:\mathrm{soon}\right] \\ $$$$\mathrm{will}\:\mathrm{also}\:\mathrm{try}\:\mathrm{for}\:\mathrm{a}\:\mathrm{hyperbola} \\ $$
Answered by mr W last updated on 16/Dec/18
(r/(R−r))=((√((R+r)^2 −(R−r)^2 ))/(R+r))=((2(√(Rr)))/(R+r))  λ=(r/R)  ⇒(λ/(1−λ))=((2(√λ))/(1+λ))  ⇒λ(1+λ)=2(1−λ)(√λ)  ⇒λ^2 (1+λ)^2 =4λ(1−λ)^2   ⇒λ(1+λ)^2 =4(1−λ)^2   ⇒λ^3 +2λ^2 +λ=4λ^2 −8λ+4  ⇒λ^3 −2λ^2 +9λ−4=0  ⇒λ=0.48389
$$\frac{{r}}{{R}−{r}}=\frac{\sqrt{\left({R}+{r}\right)^{\mathrm{2}} −\left({R}−{r}\right)^{\mathrm{2}} }}{{R}+{r}}=\frac{\mathrm{2}\sqrt{{Rr}}}{{R}+{r}} \\ $$$$\lambda=\frac{{r}}{{R}} \\ $$$$\Rightarrow\frac{\lambda}{\mathrm{1}−\lambda}=\frac{\mathrm{2}\sqrt{\lambda}}{\mathrm{1}+\lambda} \\ $$$$\Rightarrow\lambda\left(\mathrm{1}+\lambda\right)=\mathrm{2}\left(\mathrm{1}−\lambda\right)\sqrt{\lambda} \\ $$$$\Rightarrow\lambda^{\mathrm{2}} \left(\mathrm{1}+\lambda\right)^{\mathrm{2}} =\mathrm{4}\lambda\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} \\ $$$$\Rightarrow\lambda\left(\mathrm{1}+\lambda\right)^{\mathrm{2}} =\mathrm{4}\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} \\ $$$$\Rightarrow\lambda^{\mathrm{3}} +\mathrm{2}\lambda^{\mathrm{2}} +\lambda=\mathrm{4}\lambda^{\mathrm{2}} −\mathrm{8}\lambda+\mathrm{4} \\ $$$$\Rightarrow\lambda^{\mathrm{3}} −\mathrm{2}\lambda^{\mathrm{2}} +\mathrm{9}\lambda−\mathrm{4}=\mathrm{0} \\ $$$$\Rightarrow\lambda=\mathrm{0}.\mathrm{48389} \\ $$
Commented by ajfour last updated on 16/Dec/18
Thanks for solving Sir.
$${Thanks}\:{for}\:{solving}\:{Sir}. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 17/Dec/18
sir pls explain thd first line pls...
$${sir}\:{pls}\:{explain}\:{thd}\:{first}\:{line}\:{pls}… \\ $$
Commented by mr W last updated on 17/Dec/18
Commented by mr W last updated on 17/Dec/18
((BD)/(BC))=((AE)/(AC))  ⇒(r/(R−r))=((√((R+r)^2 −(R−r)^2 ))/(R+r))
$$\frac{{BD}}{{BC}}=\frac{{AE}}{{AC}} \\ $$$$\Rightarrow\frac{{r}}{{R}−{r}}=\frac{\sqrt{\left({R}+{r}\right)^{\mathrm{2}} −\left({R}−{r}\right)^{\mathrm{2}} }}{{R}+{r}} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 17/Dec/18
excellent thank you  sir...
$${excellent}\:{thank}\:{you}\:\:{sir}… \\ $$
Commented by ajfour last updated on 17/Dec/18
cos ∠DBC = cos θ =((DB)/(BC))= (r/(R−r))  sin ∠CAE = sin θ = ((CE)/(CA)) = ((R−r)/(R+r))  hence    ((r/(R−r)))^2 + (((R−r)/(R+r)))^2 =1  let  x=(r/R)  ⇒  ((x/(1−x)))^2 + (((1−x)/(1+x)))^2 = 1  ⇒  x^2 (1+x)^2 + (1−x)^4  = (1−x^2 )^2   x^4 +2x^3 +x^2  +1+x^4 −4x+6x^2 −4x^3                   = 1+x^4 −2x^2   ⇒  x^4 −2x^3 +9x^2 −4x = 0  if  x≠0,         x^3 −2x^2 +9x−4 = 0
$$\mathrm{cos}\:\angle{DBC}\:=\:\mathrm{cos}\:\theta\:=\frac{{DB}}{{BC}}=\:\frac{{r}}{{R}−{r}} \\ $$$$\mathrm{sin}\:\angle{CAE}\:=\:\mathrm{sin}\:\theta\:=\:\frac{{CE}}{{CA}}\:=\:\frac{{R}−{r}}{{R}+{r}} \\ $$$${hence}\:\:\:\:\left(\frac{{r}}{{R}−{r}}\right)^{\mathrm{2}} +\:\left(\frac{{R}−{r}}{{R}+{r}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$${let}\:\:{x}=\frac{{r}}{{R}} \\ $$$$\Rightarrow\:\:\left(\frac{{x}}{\mathrm{1}−{x}}\right)^{\mathrm{2}} +\:\left(\frac{\mathrm{1}−{x}}{\mathrm{1}+{x}}\right)^{\mathrm{2}} =\:\mathrm{1} \\ $$$$\Rightarrow\:\:{x}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)^{\mathrm{2}} +\:\left(\mathrm{1}−{x}\right)^{\mathrm{4}} \:=\:\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$${x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{3}} +{x}^{\mathrm{2}} \:+\mathrm{1}+{x}^{\mathrm{4}} −\mathrm{4}{x}+\mathrm{6}{x}^{\mathrm{2}} −\mathrm{4}{x}^{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{1}+{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{3}} +\mathrm{9}{x}^{\mathrm{2}} −\mathrm{4}{x}\:=\:\mathrm{0} \\ $$$${if}\:\:{x}\neq\mathrm{0}, \\ $$$$\:\:\:\:\:\:\:{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{9}{x}−\mathrm{4}\:=\:\mathrm{0} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 17/Dec/18
thank you sir...
$${thank}\:{you}\:{sir}… \\ $$
Answered by ajfour last updated on 16/Dec/18
i get r= 0.48389R
$${i}\:{get}\:{r}=\:\mathrm{0}.\mathrm{48389}{R} \\ $$
Commented by peter frank last updated on 16/Dec/18
please  help QN 50349
$${please}\:\:{help}\:{QN}\:\mathrm{50349} \\ $$
Commented by ajfour last updated on 16/Dec/18
thanks Sir! for confirming.
$${thanks}\:{Sir}!\:{for}\:{confirming}. \\ $$
Commented by MJS last updated on 16/Dec/18
me too.  I′ve been trying with an ellipse instead of  the big circle, it seems very hard... not sure  if it′s possible to solve.
$$\mathrm{me}\:\mathrm{too}. \\ $$$$\mathrm{I}'\mathrm{ve}\:\mathrm{been}\:\mathrm{trying}\:\mathrm{with}\:\mathrm{an}\:\mathrm{ellipse}\:\mathrm{instead}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{big}\:\mathrm{circle},\:\mathrm{it}\:\mathrm{seems}\:\mathrm{very}\:\mathrm{hard}…\:\mathrm{not}\:\mathrm{sure} \\ $$$$\mathrm{if}\:\mathrm{it}'\mathrm{s}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{solve}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *