Question Number 50577 by behi83417@gmail.com last updated on 17/Dec/18
Commented by behi83417@gmail.com last updated on 17/Dec/18
$$\measuredangle{ABC}=\mathrm{90},{AC}=\mathrm{1},{AD}=\frac{\sqrt{\mathrm{3}}}{\mathrm{6}}\:\left({angular}\:{bisector}\right). \\ $$$$\Rightarrow\:\:\:{AB}=?\:\:,{BC}=? \\ $$
Answered by ajfour last updated on 17/Dec/18
$${let}\:\:\angle{BAC}\:=\:\mathrm{2}\theta\:\:,\:{BC}\:=\:\mathrm{sin}\:\mathrm{2}\theta \\ $$$${AB}\:=\:\mathrm{cos}\:\mathrm{2}\theta\:\:,\:{AD}\:=\:\mathrm{cos}\:\mathrm{2}\theta\mathrm{sec}\:\theta \\ $$$${AD}\:=\:\frac{\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{cos}\:\theta}\:=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow\:\:\:\:\:\mathrm{2cos}\:^{\mathrm{2}} \theta−\mathrm{1}−\frac{\mathrm{cos}\:\theta}{\mathrm{2}\sqrt{\mathrm{3}}}\:=\:\mathrm{0} \\ $$$$\:\:\:\:\mathrm{4cos}\:\theta\:=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}+\sqrt{\frac{\mathrm{1}}{\mathrm{12}}+\mathrm{8}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\sqrt{\mathrm{97}}+\mathrm{1}}{\mathrm{8}\sqrt{\mathrm{3}}}\:\: \\ $$$$\:{AB}\:=\:\mathrm{cos}\:\mathrm{2}\theta\:=\:\frac{\mathrm{cos}\:\theta}{\mathrm{2}\sqrt{\mathrm{3}}}\:=\:\frac{\sqrt{\mathrm{97}}+\mathrm{1}}{\mathrm{48}}\: \\ $$$$\:\:\:\:\:\:{AB}\:\approx\:\mathrm{0}.\mathrm{226} \\ $$$$\:\:\:{BC}\:=\:\sqrt{\mathrm{1}−\left(\frac{\sqrt{\mathrm{97}}+\mathrm{1}}{\mathrm{48}}\right)^{\mathrm{2}} }\:\:\:\approx\:\mathrm{0}.\mathrm{974}\: \\ $$
Commented by behi83417@gmail.com last updated on 17/Dec/18
$${thanks}\:{sir}\:{Ajfour}. \\ $$