Menu Close

Question-50638




Question Number 50638 by ajfour last updated on 18/Dec/18
Commented by ajfour last updated on 18/Dec/18
Determine (a/b) for ellipse if α = 45° .
Determineabforellipseifα=45°.
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Dec/18
eqn normal y=xtanα  eqn ellipse  (((x−0)^2 )/a^2 )+(((y−b)^2 )/b^2 )=1  acosθ,b+bsinθ lies on normal  so  b+bsinθ=acosθtanα  b^2 x^2 +a^2 (y^2 −2yb+b^2 )=a^2 b^2   b^2 x^2 +a^2 y^2 −2a^2 by+a^2 b^2 =a^2 b^2   eqn tangent  b^2 x(acosθ)+a^2 y(b+bsinθ)−a^2 b(y+b+bsinθ)=0  x(ab^2 cosθ)+y(a^2 b+a^2 bsinθ−a^2 b)=a^2 b(b+bsinθ)  slope=m=((−ab^2 cosθ)/(a^2 bsinθ))=−(b/a)cotθ←slope of tangent  slope of normal=(a/(bcotθ))  tanα=(a/(bcotθ))  l=(√((acosθ)^2 +(b+bsinθ)^2 )) =(√(a^2 cos^2 θ+b^2 +2b^2 sinθ+b^2 sin^2 θ))   lcosα=acosθ  lsinα=b+binθ    tanα=((b+bsinθ)/(acosθ))=(a/(bcotθ))  ((b+bsinθ)/a)=((asinθ)/b)  a^2 sinθ=b^2 +b^2 sinθ  sinθ=(b^2 /(a^2 −b^2 ))  cotθ=((base)/(perpendicular))=((√((a^2 −b^2 )^2 −b^4 ))/b^2 )  cotθ=((√(a^4 −2a^2 b^2 ))/b^2 )  now tanα=(a/(bcotθ))=(a/b)×(b^2 /( (√(a^4 −2a^2 b^2 ))))  tanα=(a/b)×(b^2 /a)×(1/( (√(a^2 −2b^2 ))))=(b/(b(√(((a/b))^2 −2))))  tanα=(1/( (√(((a/b))^2 −2))))  given α=(π/4)  (√(((a/b))^2 −2)) =1  ((a/b))^2 =3   so (a/b)=(√3)  pls check...
eqnnormaly=xtanαeqnellipse(x0)2a2+(yb)2b2=1acosθ,b+bsinθliesonnormalsob+bsinθ=acosθtanαb2x2+a2(y22yb+b2)=a2b2b2x2+a2y22a2by+a2b2=a2b2eqntangentb2x(acosθ)+a2y(b+bsinθ)a2b(y+b+bsinθ)=0x(ab2cosθ)+y(a2b+a2bsinθa2b)=a2b(b+bsinθ)slope=m=ab2cosθa2bsinθ=bacotθslopeoftangentslopeofnormal=abcotθtanα=abcotθl=(acosθ)2+(b+bsinθ)2=a2cos2θ+b2+2b2sinθ+b2sin2θlcosα=acosθlsinα=b+binθtanα=b+bsinθacosθ=abcotθb+bsinθa=asinθba2sinθ=b2+b2sinθsinθ=b2a2b2cotθ=baseperpendicular=(a2b2)2b4b2cotθ=a42a2b2b2nowtanα=abcotθ=ab×b2a42a2b2tanα=ab×b2a×1a22b2=bb(ab)22tanα=1(ab)22givenα=π4(ab)22=1(ab)2=3soab=3plscheck
Commented by MJS last updated on 18/Dec/18
I get b=a((√3)/3) ⇒ (a/b)=(√3)
Igetb=a33ab=3
Commented by tanmay.chaudhury50@gmail.com last updated on 18/Dec/18
thank you sir i got the same result...
thankyousirigotthesameresult
Answered by mr W last updated on 18/Dec/18
P(h,k)  ⇒k=h  (h^2 /a^2 )+(((h−b)^2 )/b^2 )=1  (h/a^2 )+((h−b)/b^2 )(−1)=0  (h^2 /a^2 )=(((h−b)h)/b^2 )  (((h−b)h)/b^2 )+(((h−b)^2 )/b^2 )=1  ⇒h=((3b)/2)  ((9b^2 )/(4a^2 ))+(b^2 /(4b^2 ))=1  (b^2 /a^2 )=(1/3)  ⇒(b/a)=(1/( (√3)))≈0.577
P(h,k)k=hh2a2+(hb)2b2=1ha2+hbb2(1)=0h2a2=(hb)hb2(hb)hb2+(hb)2b2=1h=3b29b24a2+b24b2=1b2a2=13ba=130.577
Commented by mr W last updated on 18/Dec/18
(x^2 /a^2 )+(((y−b)^2 )/b^2 )=1  (x/a^2 )+(((y−b))/b^2 )y′=0  at (h,k): y′=−1  ⇒(h/a^2 )+(((k−b))/b^2 )(−1)=0
x2a2+(yb)2b2=1xa2+(yb)b2y=0at(h,k):y=1ha2+(kb)b2(1)=0
Commented by ajfour last updated on 18/Dec/18
Sir please explain  4th line   (h/a^2 )+(((h−b))/b^2 )(−1) = 0
Sirpleaseexplain4thlineha2+(hb)b2(1)=0

Leave a Reply

Your email address will not be published. Required fields are marked *