Question Number 50755 by ajfour last updated on 19/Dec/18
Commented by ajfour last updated on 19/Dec/18
$${Find}\:{the}\:{angle}\:{between}\:{the}\:{two} \\ $$$${triangular}\:\left({coloured}\right)\:{planes}. \\ $$
Answered by mr W last updated on 20/Dec/18
$${let}\:\theta={angle}\:{between}\:{both}\:{coloured}\:{triangles} \\ $$$$\Delta_{{abc}} =\frac{\sqrt{\left({a}+{b}+{c}\right)\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)}}{\mathrm{4}} \\ $$$$\Delta_{{pqb}} =\frac{\sqrt{\left({p}+{q}+{b}\right)\left(−{p}+{q}+{b}\right)\left({p}−{q}+{b}\right)\left({p}+{q}−{b}\right)}}{\mathrm{4}} \\ $$$$\Delta_{{pqb}} =\frac{{bh}_{{b}} }{\mathrm{2}} \\ $$$$\Rightarrow{h}_{{b}} =\frac{\mathrm{2}\Delta_{{pqb}} }{{b}}={altitude}\:{to}\:{base}\:{line}\:{b} \\ $$$$\Rightarrow{h}_{{b}} =\frac{\sqrt{\left({p}+{q}+{b}\right)\left(−{p}+{q}+{b}\right)\left({p}−{q}+{b}\right)\left({p}+{q}−{b}\right)}}{\mathrm{2}{b}} \\ $$$${V}=\frac{\Delta_{{abc}} {h}}{\mathrm{3}} \\ $$$${V}=\frac{\sqrt{{a}^{\mathrm{2}} {q}^{\mathrm{2}} \left(−{a}^{\mathrm{2}} −{q}^{\mathrm{2}} +{b}^{\mathrm{2}} +{l}^{\mathrm{2}} +{c}^{\mathrm{2}} +{p}^{\mathrm{2}} \right)+{b}^{\mathrm{2}} {l}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{q}^{\mathrm{2}} −{b}^{\mathrm{2}} −{l}^{\mathrm{2}} +{c}^{\mathrm{2}} +{p}^{\mathrm{2}} \right)+{c}^{\mathrm{2}} {p}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{q}^{\mathrm{2}} +{b}^{\mathrm{2}} +{l}^{\mathrm{2}} −{c}^{\mathrm{2}} −{p}^{\mathrm{2}} \right)−{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} −{a}^{\mathrm{2}} {l}^{\mathrm{2}} {p}^{\mathrm{2}} −{b}^{\mathrm{2}} {q}^{\mathrm{2}} {p}^{\mathrm{2}} −{c}^{\mathrm{2}} {q}^{\mathrm{2}} {l}^{\mathrm{2}} }}{\mathrm{12}} \\ $$$$\Rightarrow{h}=\frac{\mathrm{3}{V}}{\Delta_{{abc}} }={altitude}\:{to}\:{base}\:{triangle}\:{abc} \\ $$$${h}={h}_{{b}} \:\mathrm{sin}\:\theta \\ $$$$\Rightarrow\theta=\mathrm{sin}^{−\mathrm{1}} \frac{{h}}{{h}_{{b}} }=\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{3}{bV}}{\mathrm{2}\Delta_{{abc}} \Delta_{{pqb}} } \\ $$$$\Rightarrow\theta=\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{2}{b}\sqrt{{a}^{\mathrm{2}} {q}^{\mathrm{2}} \left(−{a}^{\mathrm{2}} −{q}^{\mathrm{2}} +{b}^{\mathrm{2}} +{l}^{\mathrm{2}} +{c}^{\mathrm{2}} +{p}^{\mathrm{2}} \right)+{b}^{\mathrm{2}} {l}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{q}^{\mathrm{2}} −{b}^{\mathrm{2}} −{l}^{\mathrm{2}} +{c}^{\mathrm{2}} +{p}^{\mathrm{2}} \right)+{c}^{\mathrm{2}} {p}^{\mathrm{2}} \left({a}^{\mathrm{2}} +{q}^{\mathrm{2}} +{b}^{\mathrm{2}} +{l}^{\mathrm{2}} −{c}^{\mathrm{2}} −{p}^{\mathrm{2}} \right)−{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} −{a}^{\mathrm{2}} {l}^{\mathrm{2}} {p}^{\mathrm{2}} −{b}^{\mathrm{2}} {q}^{\mathrm{2}} {p}^{\mathrm{2}} −{c}^{\mathrm{2}} {q}^{\mathrm{2}} {l}^{\mathrm{2}} }}{\:\sqrt{\left({a}+{b}+{c}\right)\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)\left({p}+{q}+{b}\right)\left(−{p}+{q}+{b}\right)\left({p}−{q}+{b}\right)\left({p}+{q}−{b}\right)}} \\ $$
Commented by mr W last updated on 20/Dec/18
Commented by ajfour last updated on 20/Dec/18
$${Great}\:{Sir}!\:{Thanks}. \\ $$