Question Number 50820 by ajfour last updated on 20/Dec/18

Commented by ajfour last updated on 20/Dec/18

Answered by ajfour last updated on 21/Dec/18
![y=Ax^2 −b bsin θ = Aa^2 cos^2 θ−b let sin θ = t ⇒ Aa^2 (1−t^2 )−b = bt other than t=−1 1−t = (b/(Aa^2 )) ⇒ t=1−(b/(Aa^2 )) ⇒ bsin θ = y_A = b−(b^2 /(Aa^2 )) x = (√((b+y)/A)) ⇒ (dx/dy) = (1/(2(√(A(b+y))))) L=∫_A ^( C) dl = 2∫_(−b) ^( y_A ) (√(1+((dx/dy))^2 )) dy = 2∫_(−b) ^( y_A ) (√(1+(1/(4A(b+y))))) dy (1/2)(dL/dA) = ∫_(−b) ^( y_A ) (((−(1/(4A^2 (b+y)))))/(2(√(1+(1/(4A(b+y))))))) dy +(b^2 /(A^2 a^2 ))(√(1+(1/(4A(2b−(b^2 /(Aa^2 ))))))) let I= ∫_(−b) ^( y_A ) ((1/((b+y)))/( (√(1+(1/(4A(b+y))))))) dy =∫(dz/( (√(z^2 +(z/(4A)))))) = ∫(dz/( (√((z+(1/(2A)))^2 −(1/(4A^2 )))))) = ln ∣z+c+(√((z+c)^2 −c^2 ))∣+k where [ c = (1/(2A)) ] y_A = b−(b^2 /(Aa^2 )) ; z_A =b+y_A =2b−((2b^2 c)/a^2 ) y_B = −b ⇒ z_B = 0 let z_A +c = t_A = 2b+(1/(2A))(1−((2b^2 )/a^2 )) t_B = z_B +c =(1/(2A)) I = ln ((t_A +(√(t_A ^2 −c^2 )))/t_B ) (dL/dA) = 0 ⇒ (I/(8A^2 )) = (b^2 /(A^2 a^2 ))(√(1+(1/(4A(2b−(b^2 /(Aa^2 ))))))) ⇒ ln ((t_A +(√(t_A ^2 −c^2 )))/t_B ) = ((8b^2 )/a^2 )(√(1+(1/(4At_A )))) ⇒ In here c = (1/(2A)) with t_A = 2b+(1/(2A))(1−((2b^2 )/a^2 )) ; t_B =(1/(2A)) A is obtainable from above equation. If for example A=0 ⇒ ln (1−((2b^2 )/a^2 )+(√((1−((2b^2 )/a^2 ))^2 −1))) = ((8b^2 )/a^2 )(√(1+2(1−((2b^2 )/a^2 )))) ⇒ b = 0 (naturally if within an ellipse with b→0 , parabola shall have maximum length if A=0 .](https://www.tinkutara.com/question/Q50822.png)
Commented by ajfour last updated on 21/Dec/18

Commented by mr W last updated on 21/Dec/18

Commented by ajfour last updated on 21/Dec/18
