Menu Close

Question-50820




Question Number 50820 by ajfour last updated on 20/Dec/18
Commented by ajfour last updated on 20/Dec/18
Choose your origin and find   equation of parabola such that  it has maximum length inside  ellipse (parameters a and b).
Chooseyouroriginandfindequationofparabolasuchthatithasmaximumlengthinsideellipse(parametersaandb).
Answered by ajfour last updated on 21/Dec/18
y=Ax^2 −b  bsin θ = Aa^2 cos^2 θ−b  let  sin θ = t  ⇒  Aa^2 (1−t^2 )−b = bt  other than t=−1      1−t = (b/(Aa^2 ))   ⇒   t=1−(b/(Aa^2 ))  ⇒  bsin θ = y_A  = b−(b^2 /(Aa^2 ))     x = (√((b+y)/A))   ⇒  (dx/dy) = (1/(2(√(A(b+y)))))     L=∫_A ^(  C) dl = 2∫_(−b) ^(  y_A ) (√(1+((dx/dy))^2 )) dy            = 2∫_(−b) ^(  y_A ) (√(1+(1/(4A(b+y))))) dy   (1/2)(dL/dA) = ∫_(−b) ^(  y_A ) (((−(1/(4A^2 (b+y)))))/(2(√(1+(1/(4A(b+y))))))) dy               +(b^2 /(A^2 a^2 ))(√(1+(1/(4A(2b−(b^2 /(Aa^2 )))))))    let I= ∫_(−b) ^(  y_A ) ((1/((b+y)))/( (√(1+(1/(4A(b+y))))))) dy        =∫(dz/( (√(z^2 +(z/(4A)))))) = ∫(dz/( (√((z+(1/(2A)))^2 −(1/(4A^2 ))))))  =  ln ∣z+c+(√((z+c)^2 −c^2 ))∣+k          where [  c = (1/(2A))   ]  y_A  = b−(b^2 /(Aa^2 ))  ;  z_A =b+y_A =2b−((2b^2 c)/a^2 )  y_B  = −b  ⇒  z_B  = 0  let  z_A +c = t_A  = 2b+(1/(2A))(1−((2b^2 )/a^2 ))         t_B  = z_B +c =(1/(2A))  I = ln ((t_A +(√(t_A ^2 −c^2 )))/t_B )  (dL/dA) = 0   ⇒  (I/(8A^2 )) = (b^2 /(A^2 a^2 ))(√(1+(1/(4A(2b−(b^2 /(Aa^2 )))))))        ⇒ ln ((t_A +(√(t_A ^2 −c^2 )))/t_B ) = ((8b^2 )/a^2 )(√(1+(1/(4At_A ))))  ⇒ In here  c = (1/(2A))  with t_A = 2b+(1/(2A))(1−((2b^2 )/a^2 ))  ; t_B =(1/(2A))  A is obtainable from above equation.  If  for example  A=0  ⇒ ln (1−((2b^2 )/a^2 )+(√((1−((2b^2 )/a^2 ))^2 −1)))        = ((8b^2 )/a^2 )(√(1+2(1−((2b^2 )/a^2 ))))  ⇒   b = 0   (naturally if within an  ellipse with b→0 , parabola shall  have maximum length if A=0 .
y=Ax2bbsinθ=Aa2cos2θbletsinθ=tAa2(1t2)b=btotherthant=11t=bAa2t=1bAa2bsinθ=yA=bb2Aa2x=b+yAdxdy=12A(b+y)L=ACdl=2byA1+(dxdy)2dy=2byA1+14A(b+y)dy12dLdA=byA(14A2(b+y))21+14A(b+y)dy+b2A2a21+14A(2bb2Aa2)letI=byA1(b+y)1+14A(b+y)dy=dzz2+z4A=dz(z+12A)214A2=lnz+c+(z+c)2c2+kwhere[c=12A]yA=bb2Aa2;zA=b+yA=2b2b2ca2yB=bzB=0letzA+c=tA=2b+12A(12b2a2)tB=zB+c=12AI=lntA+tA2c2tBdLdA=0I8A2=b2A2a21+14A(2bb2Aa2)lntA+tA2c2tB=8b2a21+14AtAInherec=12AwithtA=2b+12A(12b2a2);tB=12AAisobtainablefromaboveequation.IfforexampleA=0ln(12b2a2+(12b2a2)21)=8b2a21+2(12b2a2)b=0(naturallyifwithinanellipsewithb0,parabolashallhavemaximumlengthifA=0.
Commented by ajfour last updated on 21/Dec/18
mrW Sir can you cast a glance  please ..
mrWSircanyoucastaglanceplease..
Commented by mr W last updated on 21/Dec/18
please check what is c in  ⇒ ln ((t_A +(√(t_A ^2 −c^2 )))/t_B ) = ((8b^2 )/a^2 )(√(1+(1/(4At_A ))))  in this eqn. we should only have a,b, A.
pleasecheckwhatiscinlntA+tA2c2tB=8b2a21+14AtAinthiseqn.weshouldonlyhavea,b,A.
Commented by ajfour last updated on 21/Dec/18
Thank you Sir,  c = (1/(2A)) .
ThankyouSir,c=12A.

Leave a Reply

Your email address will not be published. Required fields are marked *