Menu Close

Question-51005




Question Number 51005 by Tawa1 last updated on 23/Dec/18
Commented by maxmathsup by imad last updated on 23/Dec/18
let A(θ) =((sin(θ−(π/6)))/( (√3) −2cosθ))  changement  θ −(π/6) =x give  A(θ) =((sinx)/( (√3)−2cos(x+(π/6)))) =((sinx)/( (√3)−2(cosx cos((π/6))−sinx sin((π/6)))))  = ((sinx)/( (√3)−2(((√3)/2)cos−(1/2)sinx))) =((sinx)/( (√3)−(√3)cosx +sinx)) but lim_(θ→(π/6))   =lim_(x→0) ((sinx)/( (√3)−(√3)cosx+sinx))  sinx ∼ x   and cosx ∼1−(x^2 /2) ⇒ ((sinx)/( (√3)−(√3)cosx −sinx)) ∼ (x/( (√3)−(√3)(1−(x^2 /2))−x))  = (x/(((√3)/2)x^2 −x)) =(1/(((√3)/2)x−1)) →−1 (x→0) ⇒lim_(θ→(π/6))    A(θ) =−1      .  error of typo  ((sinx)/( (√3)−(√3)cosx +sinx)) ∼ (x/( (√3)−(√3)(1−(x^2 /2))+x)) =(x/(((√3)/2)x^2  +x)) =  = (1/(((√3)/2)x +1)) →1  (x→0) ⇒★lim_(θ→(π/6))    A(θ) = 1 ★
letA(θ)=sin(θπ6)32cosθchangementθπ6=xgiveA(θ)=sinx32cos(x+π6)=sinx32(cosxcos(π6)sinxsin(π6))=sinx32(32cos12sinx)=sinx33cosx+sinxbutlimθπ6=limx0sinx33cosx+sinxsinxxandcosx1x22sinx33cosxsinxx33(1x22)x=x32x2x=132x11(x0)limθπ6A(θ)=1.erroroftyposinx33cosx+sinxx33(1x22)+x=x32x2+x==132x+11(x0)limθπ6A(θ)=1
Commented by maxmathsup by imad last updated on 23/Dec/18
let A(x) =((1−cosx(√(cos(2x))))/x^2 )   we have x ∈V(0)  cosx ∼1−(x^2 /2)  and  cos(2x)∼ 1−(((2x)^2 )/2) =1−2x^2  ⇒(√(cos(2x)))∼(√(1−2x^2 ))  ∼1+(1/2)(−2x^2 ) =1−x^2  ⇒A(x)∼ ((1−(1−(x^2 /2))(1−x^2 ))/x^2 )  =((1−(1−x^2  −(x^2 /2) +(x^4 /2)))/x^2 ) =((x^2  +(x^2 /2)−(x^4 /2))/x^2 ) =(3/2) −(x^2 /2) →(3/2) (x→0) ⇒  lim_(x→0)   A(x) =(3/2) .
letA(x)=1cosxcos(2x)x2wehavexV(0)cosx1x22andcos(2x)1(2x)22=12x2cos(2x)12x21+12(2x2)=1x2A(x)1(1x22)(1x2)x2=1(1x2x22+x42)x2=x2+x22x42x2=32x2232(x0)limx0A(x)=32.
Commented by Tawa1 last updated on 24/Dec/18
God bless you sir
Godblessyousir
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Dec/18
2)t=θ−(π/6)  lim_(t→0)  ((sin(t))/( (√3) −2cos(t+(π/6))))  =lim_(t→0)  ((sint)/( (√3) −2(cost.((√3)/2)−sint.(1/2))))  =lim_(t→0)  ((sint)/( (√3) −(√3) cost+sint))  =lim_(t→0)  ((2sin(t/2)cos(t/2))/( (√3) ×2sin^2 (t/2)+2sin(t/2)cos(t/2)))  =lim_(t→0)  ((cos(t/2))/( (√3) sin(t/2)+cos(t/2)))=1  or method  lim_(θ→((π )/6))   ((sin(θ−(π/6)))/(2[((√3)/2)−cos(θ)]))  [((√3)/2)=cos(π/6)]  (1/2)lim_(θ→((π )/6))  ((2sin(((θ−(π/6))/2))cos(((θ−(π/6))/2)))/(2sin((((π/6)+θ)/2))sin(((θ−(π/6))/2))))  =(1/2)×(1/(1/2))=1
2)t=θπ6limt0sin(t)32cos(t+π6)=limt0sint32(cost.32sint.12)=limt0sint33cost+sint=limt02sint2cost23×2sin2t2+2sint2cost2=limt0cost23sint2+cost2=1ormethodlimθπ6sin(θπ6)2[32cos(θ)][32=cosπ6]12limθπ62sin(θπ62)cos(θπ62)2sin(π6+θ2)sin(θπ62)=12×112=1
Commented by Tawa1 last updated on 23/Dec/18
God bless you sir
Godblessyousir
Commented by tanmay.chaudhury50@gmail.com last updated on 23/Dec/18
most welcome...
mostwelcome
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Dec/18
3)lim_(x→0)   ((1−cosx(√(cos2x)))/x^2 )  lim_(x→0)  ((1−cos^2 x(((1−tan^2 x)/(1+tan^2 x))))/(x^2 (1+cosx(√(cos2x)) )))  =lim_(x→0) ((sec^2 x−cos^2 x+sin^2 x)/(sec^2 x×x^2 ×(1+cosx(√(cos2x)) )))  =(1/2)lim_(x→0) (((1/(cos^2 x))−cos^2 x+sin^2 x)/x^2 )  (1/2)lim_(x→0)  ((sin^2 x.(1+cos^2 x)+sin^2 x)/(x^2 cos^2 x))  =(1/2)lim_(x→0)  (((sinx)/x))^2 ×(((2+cos^2 x)/(cos^2 x)))  =(1/2)×1×(3/2)=(3/4)
3)limx01cosxcos2xx2limx01cos2x(1tan2x1+tan2x)x2(1+cosxcos2x)=limx0sec2xcos2x+sin2xsec2x×x2×(1+cosxcos2x)=12limx01cos2xcos2x+sin2xx212limx0sin2x.(1+cos2x)+sin2xx2cos2x=12limx0(sinxx)2×(2+cos2xcos2x)=12×1×32=34
Commented by Tawa1 last updated on 23/Dec/18
God bless you sir
Godblessyousir
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Dec/18
1)lim_(y→0)  ((x{sec(x+y)−secx}+ysec(x+y))/y)  =x[lim_(y→0)  ((sec(x+y)−secx)/y)]+secx  =x[lim_(y→0) ((cosx−cos(x+y))/(ycosxcos(x+y)))]+secx  =x[lim_(y→0) ((2sin(x+(y/2))sin((y/2)))/(cosxcos(x+y)×(y/2)×2))]+secx  =x×((sinx)/(cos^2 x))+secx  =xtanxsecx+secx
1)limy0x{sec(x+y)secx}+ysec(x+y)y=x[limy0sec(x+y)secxy]+secx=x[limy0cosxcos(x+y)ycosxcos(x+y)]+secx=x[limy02sin(x+y2)sin(y2)cosxcos(x+y)×y2×2]+secx=x×sinxcos2x+secx=xtanxsecx+secx
Commented by Tawa1 last updated on 23/Dec/18
God bless you sir
Godblessyousir
Commented by tanmay.chaudhury50@gmail.com last updated on 23/Dec/18
most welcome...
mostwelcome

Leave a Reply

Your email address will not be published. Required fields are marked *