Menu Close

Question-51422




Question Number 51422 by ajfour last updated on 26/Dec/18
Commented by ajfour last updated on 26/Dec/18
Find R the radius of semicircle  in terms of radii a and b of the  circles.
FindRtheradiusofsemicircleintermsofradiiaandbofthecircles.
Answered by ajfour last updated on 26/Dec/18
let  sin θ = (a/(R−a)) , sin φ = (b/(R−b))     (R−a)cos θ+(R−b)cos φ = (√(4ab))  ⇒ (√(R(R−2a)))+(√(R(R−2b))) = (√(4ab))   squaring    2R^2 −2(a+b)R +2(√(R^2 {R^2 −2(a+b)R+4ab})) = 4ab  rearranging and squaring  R^2 {R^2 −2(a+b)R+4ab}       = {2ab−R^2 +(a+b)R}^2   ⇒ 4abR^2  = 4a^2 b^2 +(a+b)^2 R^2          −4abR^2 +4ab(a+b)R  ⇒ (a^2 +b^2 −6ab)R^2 +4ab(a+b)R                        +4a^2 b^2  = 0  ⇒  R = ((−2ab(a+b)−(√(4a^2 b^2 (8ab))))/(a^2 +b^2 −6ab))  or  R = [(√(8ab))+(a+b)](((2ab)/(6ab−a^2 −b^2 ))) .
letsinθ=aRa,sinϕ=bRb(Ra)cosθ+(Rb)cosϕ=4abR(R2a)+R(R2b)=4absquaring2R22(a+b)R+2R2{R22(a+b)R+4ab}=4abrearrangingandsquaringR2{R22(a+b)R+4ab}={2abR2+(a+b)R}24abR2=4a2b2+(a+b)2R24abR2+4ab(a+b)R(a2+b26ab)R2+4ab(a+b)R+4a2b2=0R=2ab(a+b)4a2b2(8ab)a2+b26aborR=[8ab+(a+b)](2ab6aba2b2).
Answered by behi83417@gmail.com last updated on 27/Dec/18
  ⇒AB=(√(2(a^2 +b^2 )))  TO=OS=R  OA=R−a,OB=R−b  sinα=(a/(R−a)),sinβ=(b/(R−b))  cosα=((√((R−a)^2 −a^2 ))/(R−a)),cosβ=((√((R−b)^2 −b^2 ))/(R−b))  cosϕ=cos(π−α−β)=−cos(α+β)=  =((ab−(√(R^2 −2Ra)).(√(R^2 −2Rb)))/((R−a)(R−b)))(i)  cosϕ=((OA^2 +OB^2 −AB^2 )/(2OA.OB))=(((R−a)^2 +(R−b)^2 −2(a^2 +b^2 ))/(2(R−a)(R−b)))=  =((2R^2 −2Ra−2Rb−a^2 −b^2 )/(2(R−a)(R−b)))(ii)  i=ii⇒  2R^2 −2Ra−2Rb−a^2 −b^2 =  =ab−(√(R^2 −2Ra)).(√(R^2 −2Rb))  a^2 +b^2 +ab+2Ra+2Rb−2R^2 =(√(R^2 −2Ra)).(√(R^2 −2Rb))  R^2 −2Ra=p,R^2 −2Rb=q,a^2 +b^2 +ab=t  a^2 +b^2 +ab−(p+q)=(√(pq))  t−(p+q)=(√(pq))⇒t^2 −2t(p+q)+(p+q)^2 =pq  p+q=2R^2 −2Ra−2Rb  (p+q)^2 =4R^4 +4R^2 a^2 +4R^2 b^2 −8R^3 a−8R^3 b+8R^2 ab  pq=(R^2 −2Ra)(R^2 −2Rb)=R^4 −2R^3 b−2R^3 a+4R^2 ab  t^2 −4R(R−a−b)t+3R^4 +4R^2 (a^2 +b^2 +ab)  −6R^3 a−6R^3 b=0  t^2 +4R(a+b)t+3R^3 (R−2a−2b)=0  ⇒△′=4R^2 (a+b)^2 −3R^3 (R−2a−2b)=  =R^2 [4(a+b)^2 −3R^2 +6R(a+b)]=R^2 m^2   a^2 +b^2 +ab=−2R(a+b)+Rm  m=((a^2 +b^2 +ab)/R)+2(a+b)
AB=2(a2+b2)TO=OS=ROA=Ra,OB=Rbsinα=aRa,sinβ=bRbcosα=(Ra)2a2Ra,cosβ=(Rb)2b2Rbcosφ=cos(παβ)=cos(α+β)==abR22Ra.R22Rb(Ra)(Rb)(i)cosφ=OA2+OB2AB22OA.OB=(Ra)2+(Rb)22(a2+b2)2(Ra)(Rb)==2R22Ra2Rba2b22(Ra)(Rb)(ii)i=ii2R22Ra2Rba2b2==abR22Ra.R22Rba2+b2+ab+2Ra+2Rb2R2=R22Ra.R22RbR22Ra=p,R22Rb=q,a2+b2+ab=ta2+b2+ab(p+q)=pqt(p+q)=pqt22t(p+q)+(p+q)2=pqp+q=2R22Ra2Rb(p+q)2=4R4+4R2a2+4R2b28R3a8R3b+8R2abpq=(R22Ra)(R22Rb)=R42R3b2R3a+4R2abt24R(Rab)t+3R4+4R2(a2+b2+ab)6R3a6R3b=0t2+4R(a+b)t+3R3(R2a2b)=0=4R2(a+b)23R3(R2a2b)==R2[4(a+b)23R2+6R(a+b)]=R2m2a2+b2+ab=2R(a+b)+Rmm=a2+b2+abR+2(a+b)
Commented by ajfour last updated on 27/Dec/18
for b=a  , we must get R=a(1+(√2))  your solution gets  m= ((3a^2 )/R)+4a  3a^2 =−4aR+3a^2 +4aR  so we dont obtain R, please resolve  Sir.
forb=a,wemustgetR=a(1+2)yoursolutiongetsm=3a2R+4a3a2=4aR+3a2+4aRsowedontobtainR,pleaseresolveSir.

Leave a Reply

Your email address will not be published. Required fields are marked *