Question Number 51422 by ajfour last updated on 26/Dec/18

Commented by ajfour last updated on 26/Dec/18

Answered by ajfour last updated on 26/Dec/18
/(6ab−a^2 −b^2 ))) .](https://www.tinkutara.com/question/Q51429.png)
Answered by behi83417@gmail.com last updated on 27/Dec/18
![⇒AB=(√(2(a^2 +b^2 ))) TO=OS=R OA=R−a,OB=R−b sinα=(a/(R−a)),sinβ=(b/(R−b)) cosα=((√((R−a)^2 −a^2 ))/(R−a)),cosβ=((√((R−b)^2 −b^2 ))/(R−b)) cosϕ=cos(π−α−β)=−cos(α+β)= =((ab−(√(R^2 −2Ra)).(√(R^2 −2Rb)))/((R−a)(R−b)))(i) cosϕ=((OA^2 +OB^2 −AB^2 )/(2OA.OB))=(((R−a)^2 +(R−b)^2 −2(a^2 +b^2 ))/(2(R−a)(R−b)))= =((2R^2 −2Ra−2Rb−a^2 −b^2 )/(2(R−a)(R−b)))(ii) i=ii⇒ 2R^2 −2Ra−2Rb−a^2 −b^2 = =ab−(√(R^2 −2Ra)).(√(R^2 −2Rb)) a^2 +b^2 +ab+2Ra+2Rb−2R^2 =(√(R^2 −2Ra)).(√(R^2 −2Rb)) R^2 −2Ra=p,R^2 −2Rb=q,a^2 +b^2 +ab=t a^2 +b^2 +ab−(p+q)=(√(pq)) t−(p+q)=(√(pq))⇒t^2 −2t(p+q)+(p+q)^2 =pq p+q=2R^2 −2Ra−2Rb (p+q)^2 =4R^4 +4R^2 a^2 +4R^2 b^2 −8R^3 a−8R^3 b+8R^2 ab pq=(R^2 −2Ra)(R^2 −2Rb)=R^4 −2R^3 b−2R^3 a+4R^2 ab t^2 −4R(R−a−b)t+3R^4 +4R^2 (a^2 +b^2 +ab) −6R^3 a−6R^3 b=0 t^2 +4R(a+b)t+3R^3 (R−2a−2b)=0 ⇒△′=4R^2 (a+b)^2 −3R^3 (R−2a−2b)= =R^2 [4(a+b)^2 −3R^2 +6R(a+b)]=R^2 m^2 a^2 +b^2 +ab=−2R(a+b)+Rm m=((a^2 +b^2 +ab)/R)+2(a+b)](https://www.tinkutara.com/question/Q51488.png)
Commented by ajfour last updated on 27/Dec/18
