Menu Close

Question-51636




Question Number 51636 by mr W last updated on 29/Dec/18
Commented by tanmay.chaudhury50@gmail.com last updated on 29/Dec/18
Commented by tanmay.chaudhury50@gmail.com last updated on 29/Dec/18
radius quadrant=R   radius semicircle=r  r^2 +(r(√2) )^2 =R^2   3r^2 =R^2   ((area semicircle)/(area quadrant))=(((πr^2 )/2)/((πR^2 )/4))=((2r^2 )/R^2 )=((2r^2 )/(3r^2 ))=(2/3)
$${radius}\:{quadrant}={R}\:\:\:{radius}\:{semicircle}={r} \\ $$$${r}^{\mathrm{2}} +\left({r}\sqrt{\mathrm{2}}\:\right)^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\mathrm{3}{r}^{\mathrm{2}} ={R}^{\mathrm{2}} \\ $$$$\frac{{area}\:{semicircle}}{{area}\:{quadrant}}=\frac{\frac{\pi{r}^{\mathrm{2}} }{\mathrm{2}}}{\frac{\pi{R}^{\mathrm{2}} }{\mathrm{4}}}=\frac{\mathrm{2}{r}^{\mathrm{2}} }{{R}^{\mathrm{2}} }=\frac{\mathrm{2}{r}^{\mathrm{2}} }{\mathrm{3}{r}^{\mathrm{2}} }=\frac{\mathrm{2}}{\mathrm{3}} \\ $$
Commented by mr W last updated on 29/Dec/18
perfect sir!
$${perfect}\:{sir}! \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 29/Dec/18
thank you sir...
$${thank}\:{you}\:{sir}… \\ $$
Answered by afachri last updated on 29/Dec/18
(2/3)
$$\frac{\mathrm{2}}{\mathrm{3}}\: \\ $$
Commented by afachri last updated on 29/Dec/18
thank you Sir.
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{Sir}. \\ $$
Commented by mr W last updated on 29/Dec/18
��
Commented by Tawa1 last updated on 29/Dec/18
Sir,  please help me look at question  51644
$$\mathrm{Sir},\:\:\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{look}\:\mathrm{at}\:\mathrm{question}\:\:\mathrm{51644} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *