Menu Close

Question-51733




Question Number 51733 by Tinkutara last updated on 30/Dec/18
Commented by maxmathsup by imad last updated on 30/Dec/18
let I =∫_0 ^(π/2)      (dx/(a^2 cos^2 x +b^2 sin^2 x)) ⇒I =∫_0 ^(π/2)    (dx/(a^2 ((1+cos(2x))/2) +b^2 ((1−cos(2x))/2)))  =2 ∫_0 ^(π/2)      (dx/(a^2  +b^2  +(a^2 −b^2 )cos(2x))) =_(2x=u)      2 ∫_0 ^π      (du/(2( a^2  +b^2  +(a^2 −b^2 )cosu)))  = ∫_0 ^π      (du/(a^2  +b^2  +(a^2 −b^2 )cosu)) =_(tan((u/2))=t)    ∫_0 ^∞       (1/(a^2  +b^2 +(a^2 −b^2 )((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 ))  =∫_0 ^∞     ((2dt)/((a^2  +b^2 )(1+t^2 ) +(a^2 −b^2 )(1−t^2 )))  =∫_0 ^∞    ((2dt)/(2a^2  +2b^2 t^2 )) =∫_0 ^∞      (dt/(a^2  +b^2 t^2 ))  =(1/a^2 )∫_0 ^∞    (dt/(1+((b/a)t)^2 )))  with ab>0  =_((b/a)t =α)     (1/a^2 ) ∫_0 ^∞    (1/(1+α^2 )) (a/b) dα =(1/(ab)) ∫_0 ^∞  (dα/(1+α^2 )) =(1/(ab)).(π/2) =(π/(2ab)) .  let f(a) = ∫_0 ^(π/2)      (dx/(a^2 cos^2 x +b^2 sin^2 x)) ⇒f^′ (a) =∫_0 ^(π/2) ((−2acos^2 x)/((a^2 cos^2 x+b^2 sin^2 x)^2 ))  =((−2)/a) ∫_0 ^(π/2)   ((a^2 cos^2 x +b^2 sin^2 x−b^2 sin^2 x)/((a^2 cos^2 x +b^2 sin^2 x)^2 ))dx  =−(2/a) ∫_0 ^π   (dx/(a^2 cos^2 x+b^2 sin^2 x)) +((2b^2 )/a) ∫_0 ^(π/2)   ((1−cos^2 x)/((a^2 cos^2 x +b^2 sin^2 x)^2 ))dx  =−(2/a)f(a) +((2b^2 )/a) ∫_0 ^(π/2)     (dx/((a^2 cos^2 x +b^2 sin^2 x)^2 )) +(b^2 /a^2 ) ∫_0 ^(π/2)   ((−2acos^2 x)/((a^2 cos^2 x +b^2 sin^2 x)^2 ))dx  f^′ (a) =−(2/a)f(a) +((2b^2 )/a) ∫_0 ^(π/2) (...)dx+(b^2 /a^2 )f^′ (a) ⇒  (1−(b^2 /a^2 ))f^′ (a) +(2/a)f(a) =((2b^2 )/a) ∫_0 ^(π/2)   (dx/((a^2 cos^2 x +b^2 sin^2 x)^2 )) ⇒  (((a^2 −b^2 )f^′ (a)+2af(a))/a^2 ) =((2b^2 )/a) ∫_0 ^(π/2)   (dx/((a^2 cos^2 x +b^2 sin^2 x)^2 )) ⇒  ∫_0 ^(π/2)    (dx/((a^2 cos^2 x +b^2 sin^2 x)^2 )) =(a/(2b^2 )) (1/a^2 ){(a^2 −b^2 )f^′ (a)+2a f(a)}  = (1/(2ab^2 )){(a^2 −b^2 )((π/(2b))(((−1)/a^2 )) +2a (π/(2ab))}  =(1/(2ab^2 )){ −(π/(2a^2 b))(a^2 −b^2 ) +(π/b)}  a=2 and b=3 ⇒  ∫_0 ^(π/2)    (dx/((4cos^2 x +9sin^2 x)^2 )) =(1/(4.9)){((π(5))/(8.3)) +(π/3)} =(1/(36)){((5π)/(24)) +((8π)/(24))}  =(1/(36)) .((13π)/(24)) =((13π)/(36.24)) =((13π)/(864))
letI=0π2dxa2cos2x+b2sin2xI=0π2dxa21+cos(2x)2+b21cos(2x)2=20π2dxa2+b2+(a2b2)cos(2x)=2x=u20πdu2(a2+b2+(a2b2)cosu)=0πdua2+b2+(a2b2)cosu=tan(u2)=t01a2+b2+(a2b2)1t21+t22dt1+t2=02dt(a2+b2)(1+t2)+(a2b2)(1t2)=02dt2a2+2b2t2=0dta2+b2t2=1a20dt1+(bat)2)withab>0=bat=α1a2011+α2abdα=1ab0dα1+α2=1ab.π2=π2ab.letf(a)=0π2dxa2cos2x+b2sin2xf(a)=0π22acos2x(a2cos2x+b2sin2x)2=2a0π2a2cos2x+b2sin2xb2sin2x(a2cos2x+b2sin2x)2dx=2a0πdxa2cos2x+b2sin2x+2b2a0π21cos2x(a2cos2x+b2sin2x)2dx=2af(a)+2b2a0π2dx(a2cos2x+b2sin2x)2+b2a20π22acos2x(a2cos2x+b2sin2x)2dxf(a)=2af(a)+2b2a0π2()dx+b2a2f(a)(1b2a2)f(a)+2af(a)=2b2a0π2dx(a2cos2x+b2sin2x)2(a2b2)f(a)+2af(a)a2=2b2a0π2dx(a2cos2x+b2sin2x)20π2dx(a2cos2x+b2sin2x)2=a2b21a2{(a2b2)f(a)+2af(a)}=12ab2{(a2b2)(π2b(1a2)+2aπ2ab}=12ab2{π2a2b(a2b2)+πb}a=2andb=30π2dx(4cos2x+9sin2x)2=14.9{π(5)8.3+π3}=136{5π24+8π24}=136.13π24=13π36.24=13π864
Commented by Tinkutara last updated on 30/Dec/18
Thanks Sir!
Commented by turbo msup by abdo last updated on 30/Dec/18
you are welcome sir.
youarewelcomesir.
Answered by tanmay.chaudhury50@gmail.com last updated on 30/Dec/18
∫_0 ^(π/2) (dx/(a^2 cos^2 x+b^2 sin^2 x))  ∫_0 ^(π/2) ((sec^2 xdx)/(a^2 +b^2 tan^2 x))  (1/b^2 )∫_0 ^(π/2) ((d(tanx))/(((a/b))^2 +tan^2 x))  (1/b^2 )×(1/(((a/b))))∣tan^(−1) (((tanx)/(a/b)))∣_0 ^(π/2)   (1/(ab))[tan^(−1) (((tan(π/2))/(a/b)))−tan^(−1) ((0/(a/b)))]  =(1/(ab))×tan^(−1) (∞)=(1/(ab))×(π/2)=(π/(2ab))    solving method−1  ∫_0 ^(π/2) (dx/((a^2 cos^2 x+b^2 sin^2 x)))=(π/(2ab))  diferentiate both side w.r.t a  ∫_0 ^(π/2) (∂/∂a)[(/((a^2 cos^2 x+b^2 sin^2 x)))]dx=(π/(2b))×((−1)/a^2 )  ∫_0 ^(π/2) ((−1×2acos^2 x)/((a^2 cos^2 x+b^2 sin^2 x)^2 ))dx=((−π)/(2a^2 b))  ∫_0 ^(π/2) ((cos^2 xdx)/((a^2 cos^2 x+b^2 sin^2 x)^2 ))dx=(π/(4a^3 b)).....eqn  p  again diffdrentiate w.r.t b  ∫_0 ^(π/2) ((−2bsin^2 x)/((a^2 cos^2 x+b^2 sin^2 x)^2 ))dx=((−π)/(2ab^2 ))  ∫_0 ^(π/2) ((sin^2 x)/((a^2 cos^2 x+b^2 sin^2 x)^2 ))=(π/(4ab^3 )).....eqn q  add eqn p and q  ∫_0 ^(π/2) ((cos^2 x+sin^2 x)/((a^2 cos^2 x+b^2 sin^2 x)^2 ))dx=(π/(4ab))((1/a^2 )+(1/b^2 ))=((π(a^2 +b^2 ))/(4a^3 b^3 ))  so answer  for given problem a=2   b=3  =((π(4+9))/(4×8×27))=((13π)/(864))
0π2dxa2cos2x+b2sin2x0π2sec2xdxa2+b2tan2x1b20π2d(tanx)(ab)2+tan2x1b2×1(ab)tan1(tanxab)0π21ab[tan1(tanπ2ab)tan1(0ab)]=1ab×tan1()=1ab×π2=π2absolvingmethod10π2dx(a2cos2x+b2sin2x)=π2abdiferentiatebothsidew.r.ta0π2a[(a2cos2x+b2sin2x)]dx=π2b×1a20π21×2acos2x(a2cos2x+b2sin2x)2dx=π2a2b0π2cos2xdx(a2cos2x+b2sin2x)2dx=π4a3b..eqnpagaindiffdrentiatew.r.tb0π22bsin2x(a2cos2x+b2sin2x)2dx=π2ab20π2sin2x(a2cos2x+b2sin2x)2=π4ab3..eqnqaddeqnpandq0π2cos2x+sin2x(a2cos2x+b2sin2x)2dx=π4ab(1a2+1b2)=π(a2+b2)4a3b3soanswerforgivenproblema=2b=3=π(4+9)4×8×27=13π864
Commented by mr W last updated on 30/Dec/18
sir, the question asks   ∫_0 ^(π/2) (dx/((a^2 cos^2 x+b^2 sin^2 x)^2 ))=?
sir,thequestionasks0π2dx(a2cos2x+b2sin2x)2=?
Commented by tanmay.chaudhury50@gmail.com last updated on 30/Dec/18
ok...  let me solve...
okletmesolve
Commented by mr W last updated on 30/Dec/18
yes, you can!
yes,youcan!
Commented by mr W last updated on 30/Dec/18
very nice method sir!
verynicemethodsir!
Commented by Tinkutara last updated on 30/Dec/18
Can we differentiate like this w.r.t any variable?
Commented by tanmay.chaudhury50@gmail.com last updated on 30/Dec/18
yes...
yes
Commented by tanmay.chaudhury50@gmail.com last updated on 30/Dec/18
ok i am solving the problem in another method  and upload problems with solution similar method  of method 1
okiamsolvingtheprobleminanothermethodanduploadproblemswithsolutionsimilarmethodofmethod1
Commented by tanmay.chaudhury50@gmail.com last updated on 30/Dec/18
thank you sir...
thankyousir
Commented by tanmay.chaudhury50@gmail.com last updated on 30/Dec/18
thank you for excellent post...
thankyouforexcellentpost
Commented by Tinkutara last updated on 30/Dec/18
Thank you very much Sir! I got the answer. ��������
Commented by afachri last updated on 30/Dec/18
i like your solution above Mr Tanmay.   i save it to observe  the steps. amazing
ilikeyoursolutionaboveMrTanmay.isaveittoobservethesteps.amazing
Answered by tanmay.chaudhury50@gmail.com last updated on 30/Dec/18
method 2  ∫_0 ^(π/2) (dx/((a^2 cos^2 x+b^2 sin^2 x)^2 ))  ∫_0 ^(π/2) ((sec^4 xdx)/(b^4 [((a/b))^2 +tan^2 x]^2 ))  now put tanx=(a/b)tank  sec^2 xdx=(a/b)sec^2 kdk  ∫_0 ^(π/2) (((1+(a^2 /b^2 )tan^2 k)×(a/b)sec^2 kdk)/(b^4 [((a/b))^2 +((a/b))^2 tan^2 k]^2 ))  (a/b^3 )×(1/b^4 )∫_0 ^(π/2) (((b^2 +a^2 tan^2 k)sec^2 kdk)/(((a/b))^4 sec^4 k))  (a/b^7 )×(b^4 /a^4 )∫_0 ^(π/2) ((b^2 /(sec^2 k))+((a^2 tan^2 k)/(sec^2 k)))dk  =(1/(a^3 b^3 ))∫_0 ^(π/2) (b^2 cos^2 k+a^2 sin^2 k)dk  (1/(a^3 b^3 ))×(1/2)∫_0 ^(π/2) b^2 (1+cos2k)+a^2 (1−cos2k)dk  (1/(2a^3 b^3 ))[∣b^2 (k+((sin2k)/2))+a^2 (k−((sin2k)/2))∣_0 ^(π/2) ]  (1/(2a^3 b^3 ))[b^2 ((π/2)+((sinπ)/2))+a^2 ((π/2)−((sinπ)/2))]  =(1/(2a^3 b^3 ))[(π/2)(a^2 +b^2 )]     [sinπ=0]  =((π(a^2 +b^2 ))/(4a^3 b^3 ))=((π(2^2 +3^2 ))/(4×8×27))=((13π)/(864))
method20π2dx(a2cos2x+b2sin2x)20π2sec4xdxb4[(ab)2+tan2x]2nowputtanx=abtanksec2xdx=absec2kdk0π2(1+a2b2tan2k)×absec2kdkb4[(ab)2+(ab)2tan2k]2ab3×1b40π2(b2+a2tan2k)sec2kdk(ab)4sec4kab7×b4a40π2(b2sec2k+a2tan2ksec2k)dk=1a3b30π2(b2cos2k+a2sin2k)dk1a3b3×120π2b2(1+cos2k)+a2(1cos2k)dk12a3b3[b2(k+sin2k2)+a2(ksin2k2)0π2]12a3b3[b2(π2+sinπ2)+a2(π2sinπ2)]=12a3b3[π2(a2+b2)][sinπ=0]=π(a2+b2)4a3b3=π(22+32)4×8×27=13π864

Leave a Reply

Your email address will not be published. Required fields are marked *