Question Number 51733 by Tinkutara last updated on 30/Dec/18

Commented by maxmathsup by imad last updated on 30/Dec/18

Commented by Tinkutara last updated on 30/Dec/18
Thanks Sir!
Commented by turbo msup by abdo last updated on 30/Dec/18

Answered by tanmay.chaudhury50@gmail.com last updated on 30/Dec/18
![∫_0 ^(π/2) (dx/(a^2 cos^2 x+b^2 sin^2 x)) ∫_0 ^(π/2) ((sec^2 xdx)/(a^2 +b^2 tan^2 x)) (1/b^2 )∫_0 ^(π/2) ((d(tanx))/(((a/b))^2 +tan^2 x)) (1/b^2 )×(1/(((a/b))))∣tan^(−1) (((tanx)/(a/b)))∣_0 ^(π/2) (1/(ab))[tan^(−1) (((tan(π/2))/(a/b)))−tan^(−1) ((0/(a/b)))] =(1/(ab))×tan^(−1) (∞)=(1/(ab))×(π/2)=(π/(2ab)) solving method−1 ∫_0 ^(π/2) (dx/((a^2 cos^2 x+b^2 sin^2 x)))=(π/(2ab)) diferentiate both side w.r.t a ∫_0 ^(π/2) (∂/∂a)[(/((a^2 cos^2 x+b^2 sin^2 x)))]dx=(π/(2b))×((−1)/a^2 ) ∫_0 ^(π/2) ((−1×2acos^2 x)/((a^2 cos^2 x+b^2 sin^2 x)^2 ))dx=((−π)/(2a^2 b)) ∫_0 ^(π/2) ((cos^2 xdx)/((a^2 cos^2 x+b^2 sin^2 x)^2 ))dx=(π/(4a^3 b)).....eqn p again diffdrentiate w.r.t b ∫_0 ^(π/2) ((−2bsin^2 x)/((a^2 cos^2 x+b^2 sin^2 x)^2 ))dx=((−π)/(2ab^2 )) ∫_0 ^(π/2) ((sin^2 x)/((a^2 cos^2 x+b^2 sin^2 x)^2 ))=(π/(4ab^3 )).....eqn q add eqn p and q ∫_0 ^(π/2) ((cos^2 x+sin^2 x)/((a^2 cos^2 x+b^2 sin^2 x)^2 ))dx=(π/(4ab))((1/a^2 )+(1/b^2 ))=((π(a^2 +b^2 ))/(4a^3 b^3 )) so answer for given problem a=2 b=3 =((π(4+9))/(4×8×27))=((13π)/(864))](https://www.tinkutara.com/question/Q51736.png)
Commented by mr W last updated on 30/Dec/18

Commented by tanmay.chaudhury50@gmail.com last updated on 30/Dec/18

Commented by mr W last updated on 30/Dec/18

Commented by mr W last updated on 30/Dec/18

Commented by Tinkutara last updated on 30/Dec/18
Can we differentiate like this w.r.t any variable?
Commented by tanmay.chaudhury50@gmail.com last updated on 30/Dec/18

Commented by tanmay.chaudhury50@gmail.com last updated on 30/Dec/18

Commented by tanmay.chaudhury50@gmail.com last updated on 30/Dec/18

Commented by tanmay.chaudhury50@gmail.com last updated on 30/Dec/18

Commented by Tinkutara last updated on 30/Dec/18
Thank you very much Sir! I got the answer. ��������
Commented by afachri last updated on 30/Dec/18

Answered by tanmay.chaudhury50@gmail.com last updated on 30/Dec/18
![method 2 ∫_0 ^(π/2) (dx/((a^2 cos^2 x+b^2 sin^2 x)^2 )) ∫_0 ^(π/2) ((sec^4 xdx)/(b^4 [((a/b))^2 +tan^2 x]^2 )) now put tanx=(a/b)tank sec^2 xdx=(a/b)sec^2 kdk ∫_0 ^(π/2) (((1+(a^2 /b^2 )tan^2 k)×(a/b)sec^2 kdk)/(b^4 [((a/b))^2 +((a/b))^2 tan^2 k]^2 )) (a/b^3 )×(1/b^4 )∫_0 ^(π/2) (((b^2 +a^2 tan^2 k)sec^2 kdk)/(((a/b))^4 sec^4 k)) (a/b^7 )×(b^4 /a^4 )∫_0 ^(π/2) ((b^2 /(sec^2 k))+((a^2 tan^2 k)/(sec^2 k)))dk =(1/(a^3 b^3 ))∫_0 ^(π/2) (b^2 cos^2 k+a^2 sin^2 k)dk (1/(a^3 b^3 ))×(1/2)∫_0 ^(π/2) b^2 (1+cos2k)+a^2 (1−cos2k)dk (1/(2a^3 b^3 ))[∣b^2 (k+((sin2k)/2))+a^2 (k−((sin2k)/2))∣_0 ^(π/2) ] (1/(2a^3 b^3 ))[b^2 ((π/2)+((sinπ)/2))+a^2 ((π/2)−((sinπ)/2))] =(1/(2a^3 b^3 ))[(π/2)(a^2 +b^2 )] [sinπ=0] =((π(a^2 +b^2 ))/(4a^3 b^3 ))=((π(2^2 +3^2 ))/(4×8×27))=((13π)/(864))](https://www.tinkutara.com/question/Q51767.png)