Menu Close

Question-51805




Question Number 51805 by azizullah last updated on 30/Dec/18
Commented by tanmay.chaudhury50@gmail.com last updated on 30/Dec/18
Commented by maxmathsup by imad last updated on 30/Dec/18
the inequation is defined on R−{2}  and (e) ⇔(((x+2)(x−2))/((x−2)^2 ))>0 ⇔  (x+2)(x−2)>0 and x≠2 ⇔ x ∈]−∞,−2[∪]2,+∞[.
$${the}\:{inequation}\:{is}\:{defined}\:{on}\:{R}−\left\{\mathrm{2}\right\}\:\:{and}\:\left({e}\right)\:\Leftrightarrow\frac{\left({x}+\mathrm{2}\right)\left({x}−\mathrm{2}\right)}{\left({x}−\mathrm{2}\right)^{\mathrm{2}} }>\mathrm{0}\:\Leftrightarrow \\ $$$$\left.\left({x}+\mathrm{2}\right)\left({x}−\mathrm{2}\right)>\mathrm{0}\:{and}\:{x}\neq\mathrm{2}\:\Leftrightarrow\:{x}\:\in\right]−\infty,−\mathrm{2}\left[\cup\right]\mathrm{2},+\infty\left[.\right. \\ $$
Commented by azizullah last updated on 31/Dec/18
        thanks so much dear sir.
$$\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{thanks}}\:\boldsymbol{\mathrm{so}}\:\boldsymbol{\mathrm{much}}\:\boldsymbol{\mathrm{dear}}\:\boldsymbol{\mathrm{sir}}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 30/Dec/18
critical value of x are −2 and 2  1)x≠2  because at x=2 D_r =0  2)when x>2   N_r >0  and  D_r >0     (N_r /D_(r ) )>0    [given condition ((x+2)/(x−2))>0 fulfill]  3)2>x>−2  [say x=1  then N_r >0  D_r <0   (N_r /D_r )<0   so given condition ((x+2)/(x−2))>0 does not fulfill  3)x<−2  [say x=−3   N_r =−ve  D_r =−ve but     (N_r /D_r )>0  given condition  ((x+2)/(x−2))>0 fullfill    4)x=−2   N_r =0   D_r =−4   (N_r /D_r )=0  but given condition does not fulfill     ((x+2)/(x−2))>0  so solution set is   (−∞,−2)∪(2,+∞)
$${critical}\:{value}\:{of}\:{x}\:{are}\:−\mathrm{2}\:{and}\:\mathrm{2} \\ $$$$\left.\mathrm{1}\right){x}\neq\mathrm{2}\:\:{because}\:{at}\:{x}=\mathrm{2}\:{D}_{{r}} =\mathrm{0} \\ $$$$\left.\mathrm{2}\right){when}\:{x}>\mathrm{2}\:\:\:{N}_{{r}} >\mathrm{0}\:\:{and}\:\:{D}_{{r}} >\mathrm{0} \\ $$$$\:\:\:\frac{{N}_{{r}} }{{D}_{{r}\:} }>\mathrm{0}\:\:\:\:\left[{given}\:{condition}\:\frac{{x}+\mathrm{2}}{{x}−\mathrm{2}}>\mathrm{0}\:{fulfill}\right] \\ $$$$\left.\mathrm{3}\right)\mathrm{2}>{x}>−\mathrm{2}\:\:\left[{say}\:{x}=\mathrm{1}\:\:{then}\:{N}_{{r}} >\mathrm{0}\:\:{D}_{{r}} <\mathrm{0}\:\:\:\frac{{N}_{{r}} }{{D}_{{r}} }<\mathrm{0}\right. \\ $$$$\:{so}\:{given}\:{condition}\:\frac{{x}+\mathrm{2}}{{x}−\mathrm{2}}>\mathrm{0}\:{does}\:{not}\:{fulfill} \\ $$$$\left.\mathrm{3}\right){x}<−\mathrm{2}\:\:\left[{say}\:{x}=−\mathrm{3}\:\:\:{N}_{{r}} =−{ve}\:\:{D}_{{r}} =−{ve}\:{but}\right. \\ $$$$\:\:\:\frac{{N}_{{r}} }{{D}_{{r}} }>\mathrm{0}\:\:{given}\:{condition}\:\:\frac{{x}+\mathrm{2}}{{x}−\mathrm{2}}>\mathrm{0}\:{fullfill} \\ $$$$ \\ $$$$\left.\mathrm{4}\right){x}=−\mathrm{2}\:\:\:{N}_{{r}} =\mathrm{0}\:\:\:{D}_{{r}} =−\mathrm{4}\:\:\:\frac{{N}_{{r}} }{{D}_{{r}} }=\mathrm{0} \\ $$$${but}\:{given}\:{condition}\:{does}\:{not}\:{fulfill}\: \\ $$$$\:\:\frac{{x}+\mathrm{2}}{{x}−\mathrm{2}}>\mathrm{0} \\ $$$${so}\:{solution}\:{set}\:{is}\: \\ $$$$\left(−\infty,−\mathrm{2}\right)\cup\left(\mathrm{2},+\infty\right) \\ $$$$ \\ $$
Commented by azizullah last updated on 31/Dec/18
        thanks dear sir.
$$\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{thanks}}\:\boldsymbol{\mathrm{dear}}\:\boldsymbol{\mathrm{sir}}. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 31/Dec/18
most welcome...
$${most}\:{welcome}… \\ $$
Answered by afachri last updated on 30/Dec/18
   “ > 0 ” means always possitive. It happen      when :      ((negative)/(negative))  or  ((possitive)/(possitive))    when (x − 2) is possitive, (x + 2) also possitive.  it happens when x :        x − 2 > 0             x     >   2  when (x + 2) is negative, so is (x−2).  x + 2 < 0       x      < −2    set of solution   { −2 > x > 2 , x∈R }
$$\:\:\:“\:>\:\mathrm{0}\:''\:\mathrm{means}\:\mathrm{always}\:\mathrm{possitive}.\:\mathrm{It}\:\mathrm{happen} \\ $$$$\:\:\:\:\mathrm{when}\:: \\ $$$$\:\:\:\:\frac{\mathrm{negative}}{\mathrm{negative}}\:\:\mathrm{or}\:\:\frac{\mathrm{possitive}}{\mathrm{possitive}} \\ $$$$ \\ $$$$\mathrm{when}\:\left({x}\:−\:\mathrm{2}\right)\:\mathrm{is}\:\mathrm{possitive},\:\left({x}\:+\:\mathrm{2}\right)\:\mathrm{also}\:\mathrm{possitive}. \\ $$$$\mathrm{it}\:\mathrm{happens}\:\mathrm{when}\:{x}\::\: \\ $$$$\:\:\:\:\:{x}\:−\:\mathrm{2}\:>\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{x}\:\:\:\:\:>\:\:\:\mathrm{2} \\ $$$$\mathrm{when}\:\left({x}\:+\:\mathrm{2}\right)\:\mathrm{is}\:\mathrm{negative},\:\mathrm{so}\:\mathrm{is}\:\left({x}−\mathrm{2}\right). \\ $$$${x}\:+\:\mathrm{2}\:<\:\mathrm{0} \\ $$$$\:\:\:\:\:{x}\:\:\:\:\:\:<\:−\mathrm{2} \\ $$$$ \\ $$$$\mathrm{set}\:\mathrm{of}\:\mathrm{solution}\:\:\:\left\{\:−\mathrm{2}\:>\:{x}\:>\:\mathrm{2}\:,\:{x}\in\mathbb{R}\:\right\} \\ $$$$ \\ $$
Commented by azizullah last updated on 31/Dec/18
        thanks sir for solution of the given equation.
$$\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{thanks}}\:\boldsymbol{\mathrm{sir}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{solution}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{given}}\:\boldsymbol{\mathrm{equation}}. \\ $$
Commented by afachri last updated on 31/Dec/18
you′re welcome Azizullah
$$\mathrm{you}'\mathrm{re}\:\mathrm{welcome}\:\mathrm{Azizullah} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *