Question Number 52190 by ajfour last updated on 04/Jan/19
Commented by ajfour last updated on 04/Jan/19
$${Or}\:{else}\:{find}\:{just}\:\theta. \\ $$
Commented by MJS last updated on 04/Jan/19
$$\mathrm{putting}\:{R}=\mathrm{1}\:\mathrm{I}\:\mathrm{get}\:\theta=\frac{\pi}{\mathrm{4}}+\mathrm{arcsin}\:\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\approx\mathrm{65}.\mathrm{7048}° \\ $$$$\mathrm{maximum}\:\mathrm{perimeter}\:=\:\mathrm{1}+\sqrt{\mathrm{3}+\sqrt{\mathrm{7}}}+\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{10}+\mathrm{2}\sqrt{\mathrm{7}}}\approx\mathrm{5}.\mathrm{33130} \\ $$
Commented by ajfour last updated on 04/Jan/19
$${whats}\:{the}\:{equation},\:{sir}\:? \\ $$
Answered by mr W last updated on 04/Jan/19
$${as}\:{shown}\:{in}\:{Q}\mathrm{52061},\:{calculus}\:{method} \\ $$$${is}\:{not}\:{the}\:{easiest}\:{way}\:{to}\:{solve}\:{such} \\ $$$${questions}.\:{the}\:{best}\:{way}\:{is}\:{to}\:{follow} \\ $$$${the}\:{nature}\:{directly}.\:{the}\:{optimum}\:{in} \\ $$$${mathematics}\:{is}\:{usually}\:{that}\:{what}\:{the} \\ $$$${nature}\:{does}.\:{symmetry}\:{is}\:{e}.{g}.\:{nature}. \\ $$$$ \\ $$$${if}\:{points}\:{A}\:{and}\:{C}\:{both}\:{lie}\:{on}\:{the}\:{circle}, \\ $$$${we}\:{know}\:{without}\:“{calculation}''\:{where} \\ $$$${the}\:{point}\:{B}\:{lies}\:{such}\:{that}\:{the}\:{length} \\ $$$${of}\:{path}\:{A}−{B}−{C}\:{is}\:{maximum}. \\ $$$${we}\:{can}\:{say}\:{it}'{s}\:{the}\:{symmetry},\:{but}\:{we} \\ $$$${also}\:{know}\:{it}'{s}\:{the}\:{way}\:{a}\:{light}\:{ray}\:{in} \\ $$$${the}\:{nature}\:{will}\:{follow}. \\ $$$${therefore},\:{without}\:{calculus},\:{the}\:{path} \\ $$$${A}−{B}−{C}\:{has}\:{its}\:{maximum}\:{length}, \\ $$$${when}\:{OB}\:{is}\:{the}\:{bisector}\:{of}\:\angle{B}. \\ $$$$ \\ $$$${let}\:\alpha=\angle{OBA}=\angle{OBC} \\ $$$$\Rightarrow\angle{B}=\mathrm{2}\alpha,\:\angle{C}=\frac{\pi}{\mathrm{2}}+\alpha,\:\angle{A}=\pi−\mathrm{2}\alpha−\left(\frac{\pi}{\mathrm{2}}+\alpha\right)=\frac{\pi}{\mathrm{2}}−\mathrm{3}\alpha \\ $$$${BC}=\mathrm{2}{R}\:\mathrm{cos}\:\alpha \\ $$$$\frac{{BC}}{\mathrm{sin}\:{A}}=\frac{{CA}}{\mathrm{sin}\:{B}} \\ $$$$\Rightarrow\frac{\mathrm{2}{R}\:\mathrm{cos}\:\alpha}{\mathrm{cos}\:\mathrm{3}\alpha}=\frac{{R}}{\mathrm{sin}\:\mathrm{2}\alpha} \\ $$$$\Rightarrow\mathrm{cos}\:\mathrm{3}\alpha=\mathrm{2}\:\mathrm{sin}\:\mathrm{2}\alpha\:\mathrm{cos}\:\alpha \\ $$$$\Rightarrow\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\alpha−\mathrm{3}=\mathrm{2}\:\mathrm{sin}\:\mathrm{2}\alpha \\ $$$$\Rightarrow\mathrm{2}\:\mathrm{cos}\:\mathrm{2}\alpha−\mathrm{1}=\mathrm{2}\:\mathrm{sin}\:\mathrm{2}\alpha \\ $$$$\Rightarrow\mathrm{cos}\:\mathrm{2}\alpha−\mathrm{sin}\:\mathrm{2}\alpha=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{sin}\:\frac{\pi}{\mathrm{4}}\mathrm{cos}\:\mathrm{2}\alpha−\mathrm{cos}\:\frac{\pi}{\mathrm{4}}\:\mathrm{sin}\:\mathrm{2}\alpha=\frac{\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$$$\Rightarrow\mathrm{sin}\:\left(\frac{\pi}{\mathrm{4}}−\mathrm{2}\alpha\right)=\frac{\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$$$\Rightarrow\frac{\pi}{\mathrm{4}}−\mathrm{2}\alpha=\mathrm{sin}^{−\mathrm{1}} \frac{\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$$$\theta=\frac{\pi}{\mathrm{2}}−\mathrm{2}\alpha=\frac{\pi}{\mathrm{4}}+\left(\frac{\pi}{\mathrm{4}}−\mathrm{2}\alpha\right) \\ $$$$\Rightarrow\theta=\frac{\pi}{\mathrm{4}}+\mathrm{sin}^{−\mathrm{1}} \frac{\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$
Commented by mr W last updated on 04/Jan/19
$${this}\:{result}\:{coincides}\:{with}\:{the}\:{result} \\ $$$${by}\:{calculus}\:{method}\:{as}\:{MJS}\:{sir}\:{has} \\ $$$${shown}. \\ $$
Answered by MJS last updated on 04/Jan/19
$${R}=\mathrm{1} \\ $$$${A}=\begin{pmatrix}{\mathrm{1}}\\{\mathrm{0}}\end{pmatrix}\:\:{C}=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:\:{B}=\begin{pmatrix}{−\mathrm{cos}\:\theta}\\{\mathrm{1}+\mathrm{sin}\:\theta}\end{pmatrix} \\ $$$${b}=\mid{AC}\mid=\mathrm{1} \\ $$$${c}=\mid{AB}\mid=\sqrt{\mathrm{3}+\mathrm{2cos}\:\theta\:+\mathrm{2sin}\:\theta} \\ $$$${a}=\mid{BC}\mid=\sqrt{\mathrm{2}+\mathrm{2sin}\:\theta} \\ $$$${p}\left(\theta\right)=\mathrm{1}+\sqrt{\mathrm{2}+\mathrm{2sin}\:\theta}+\sqrt{\mathrm{3}+\mathrm{2cos}\:\theta\:+\mathrm{2sin}\:\theta} \\ $$$${p}'\left(\theta\right)=\mathrm{0} \\ $$$$\frac{\mathrm{cos}\:\theta\:\sqrt{\mathrm{6}+\mathrm{4cos}\:\theta\:+\mathrm{4sin}\:\theta}+\mathrm{2}\left(\mathrm{cos}\:\theta\:−\mathrm{sin}\:\theta\right)\sqrt{\mathrm{1}+\mathrm{sin}\:\theta}}{\mathrm{2}\sqrt{\mathrm{1}+\mathrm{sin}\:\theta}\sqrt{\mathrm{3}+\mathrm{2cos}\:\theta\:+\mathrm{2sin}\:\theta}}=\mathrm{0} \\ $$$$\mathrm{cos}\:\theta\:={c} \\ $$$$\mathrm{sin}\:\theta\:={s} \\ $$$$… \\ $$$${s}^{\mathrm{3}} −\left(\mathrm{2}{c}−\mathrm{1}\right){s}^{\mathrm{2}} −\mathrm{2}{cs}−\frac{{c}^{\mathrm{2}} \left(\mathrm{2}{c}+\mathrm{1}\right)}{\mathrm{2}}=\mathrm{0} \\ $$$$\mathrm{2}{c}\left(\mathrm{2}{s}^{\mathrm{2}} +\mathrm{2}{s}+{c}^{\mathrm{2}} \right)=\mathrm{2}{s}^{\mathrm{3}} +\mathrm{2}{s}^{\mathrm{2}} −{c}^{\mathrm{2}} \\ $$$${c}^{\mathrm{2}} =\mathrm{1}−{s}^{\mathrm{2}} \\ $$$$\mathrm{2}{c}\left({s}^{\mathrm{2}} +\mathrm{2}{s}+\mathrm{1}\right)=\mathrm{2}{s}^{\mathrm{3}} +\mathrm{3}{s}^{\mathrm{2}} −\mathrm{1} \\ $$$$\mathrm{2}{c}\left({s}+\mathrm{1}\right)^{\mathrm{2}} =\left({s}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{2}{s}−\mathrm{1}\right) \\ $$$$\mathrm{2}{c}=\mathrm{2}{s}−\mathrm{1} \\ $$$$\mathrm{1}+\mathrm{2cos}\:\theta\:−\mathrm{2sin}\:\theta\:=\mathrm{0} \\ $$$$\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}\mathrm{cos}\:\left(\frac{\pi}{\mathrm{4}}+\theta\right)=\mathrm{0} \\ $$$$\theta=−\frac{\pi}{\mathrm{4}}+\mathrm{arccos}\:\left(−\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\right)\:=\frac{\pi}{\mathrm{4}}+\mathrm{arcsin}\:\frac{\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$
Commented by ajfour last updated on 04/Jan/19
$${Great}\:{Beauty}\:{Sir}! \\ $$