Menu Close

Question-52208




Question Number 52208 by SUJIT420 last updated on 04/Jan/19
Commented by maxmathsup by imad last updated on 04/Jan/19
its not c its e .
itsnotcitse.
Commented by maxmathsup by imad last updated on 04/Jan/19
let U(x)=(1+x)^(1/x) −e  and V(x)=x we have   U(x)=e^((1/x)ln(1+x)) −e   ⇒lim_(x→0) U(x)=0   hospital theorem give   lim_(x→0)  ((U(x))/x) =lim_(x→0)   U^′ (x) but U^′ (x)=(((ln(1+x))/x))^′ U(x)  =(((x/(1+x))−ln(1+x))/x^2 ) U(x) =((x−(1+x)ln(1+x))/x^2 )U(x) but  ln(1+x)∼x ⇒x−(1+x)ln(1+x)∼x−x(1+x)=−x^2  ⇒U^′ (x)∼−U(x) (x→0)  we have ln^′ (1+x)=(1/(1+x)) =1−x +o(x^2 ) ⇒ln(1+x)=x−(x^2 /2) +o(x^3 ) ⇒  ((ln(1+x))/x) =1−(x/2) +o(x^2 ) ⇒e^((ln(1+x))/x)  =e^(1−(x/2)+o(x^2 ))  =e(1−(x/2)+o(x^2 )) ⇒  e^((ln(1+x))/x) −e  =−((ex)/2) +o(x^2 )⇒ ((U(x))/x) =−(e/2) +o(x) ⇒lim_(x→0)  ((U(x))/x) =−(e/2)   and we see that  hospital theorem don t work good in this case .
letU(x)=(1+x)1xeandV(x)=xwehaveU(x)=e1xln(1+x)elimx0U(x)=0hospitaltheoremgivelimx0U(x)x=limx0U(x)butU(x)=(ln(1+x)x)U(x)=x1+xln(1+x)x2U(x)=x(1+x)ln(1+x)x2U(x)butln(1+x)xx(1+x)ln(1+x)xx(1+x)=x2U(x)U(x)(x0)wehaveln(1+x)=11+x=1x+o(x2)ln(1+x)=xx22+o(x3)ln(1+x)x=1x2+o(x2)eln(1+x)x=e1x2+o(x2)=e(1x2+o(x2))eln(1+x)xe=ex2+o(x2)U(x)x=e2+o(x)limx0U(x)x=e2andweseethathospitaltheoremdontworkgoodinthiscase.
Commented by afachri last updated on 05/Jan/19
is it possible to transform (1 + x)^(1/x) − e into Taylor  serie Sir ??? because i got stuck to find the  derrivative of (1 + x)^(1/x)
isitpossibletotransform(1+x)1xeintoTaylorserieSir???becauseigotstucktofindthederrivativeof(1+x)1x
Answered by Smail last updated on 05/Jan/19
lim_(x→0) (((1+x)^(1/x) −e)/x)=lim_(x→0) ((e^((ln(1+x))/x) −e)/x)  ln(1+x)≈x−(x^2 /2)  near 0  so lim_(x→0) (((1+x)^(1/x) −e)/x)=lim_(x→0) ((e^((x−(x^2 /2))/x) −e)/x)  =lim_(x→0) ((e^(1−(x/2)) −e)/x)=lim_(x→0) ((e(e^(−(x/2)) −1))/x)  e^t ≈1+t near 0  lim_(x→0) (((1+x)^(1/x) −e)/x)=lim_(x→0) ((e(1−(x/2)−1))/x)=lim_(x→0) ((−xe)/(2x))  =((−e)/2)
limx0(1+x)1/xex=limx0eln(1+x)xexln(1+x)xx22near0solimx0(1+x)1/xex=limx0exx22xex=limx0e1x2ex=limx0e(ex21)xet1+tnear0limx0(1+x)1/xex=limx0e(1x21)x=limx0xe2x=e2

Leave a Reply

Your email address will not be published. Required fields are marked *