Question Number 52214 by Tawa1 last updated on 04/Jan/19
Commented by Tawa1 last updated on 04/Jan/19
$$\mathrm{Evaluate} \\ $$
Commented by mr W last updated on 05/Jan/19
$${i}\:{know}\:{it}'{s}\:\frac{\mathrm{9}}{\mathrm{32}} \\ $$$${but}\:{i}\:{can}'{t}\:{prove}. \\ $$
Commented by rahul 19 last updated on 05/Jan/19
Yes Sir!
U r right .
Just interchange the summation
(as they are independent) , call
them as EQ. (1) & (2) and add
them...
Commented by Tawa1 last updated on 05/Jan/19
$$\mathrm{Please}\:\mathrm{show}\:\mathrm{it}\:\mathrm{sir} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Jan/19
$${T}_{{m},{n}} =\frac{\frac{{m}}{\mathrm{3}^{{m}} }}{\left(\frac{\mathrm{3}^{{m}} }{{m}}+\frac{\mathrm{3}^{{n}} }{{n}}\right)} \\ $$$${since}\:{both}\:{m}\rightarrow\infty \\ $$$${and}\:{n}\rightarrow\infty \\ $$$${and}\:\:{value}\:{of}\:\frac{\mathrm{3}^{{m}} }{{m}}=\frac{\mathrm{3}^{{n}} }{{n}}\:{when}\:{we}\:{put}\:{m}=\mathrm{1},\mathrm{2},\mathrm{3}… \\ $$$${n}=\mathrm{1},\mathrm{2},\mathrm{3}…{simutaneously} \\ $$$${so}\: \\ $$$${T}_{{m},{n}} ={T}_{{r}\:} =\frac{\frac{{r}}{\mathrm{3}^{{r}} }}{\mathrm{2}×\frac{\mathrm{3}^{{r}} }{{r}}}=\frac{\mathrm{1}}{\mathrm{2}}×\left(\frac{{r}}{\mathrm{3}^{{r}} }\right)^{\mathrm{2}} \\ $$$$\boldsymbol{{s}}=\boldsymbol{{T}}_{\mathrm{1}} +{T}_{\mathrm{2}} +{T}_{\mathrm{3}} +…\infty \\ $$$${S}=\frac{\mathrm{1}}{\mathrm{2}}\left[\left(\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{1}} }\right)^{\mathrm{2}} +\left(\frac{\mathrm{2}}{\mathrm{3}^{\mathrm{2}} }\right)^{\mathrm{2}} +\left(\frac{\mathrm{3}}{\mathrm{3}^{\mathrm{3}} }\right)^{\mathrm{2}} +…\infty\right. \\ $$$${wait}… \\ $$
Commented by mr W last updated on 05/Jan/19
$${it}'{s}\:{not}\:{correct}\:{sir}. \\ $$$${you}\:{can}\:{not}\:{transfer}\:{T}_{\infty,\infty} \:{to}\:{T}_{{m},{n}} . \\ $$$$\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{a}_{{m},{n}} =\left({a}_{\mathrm{1},\mathrm{1}} +{a}_{\mathrm{1},\mathrm{2}} +…\right)+\left({a}_{\mathrm{2},\mathrm{1}} +{a}_{\mathrm{2},\mathrm{3}} +…\right)+\left(…..\right)+ \\ $$$$=\left(\infty\:{numbers}\right)+\left(\infty\:{numbers}\right)+\left(…\right)+ \\ $$$$=\infty×\infty\:{numbers} \\ $$$$ \\ $$$${e}.{g}. \\ $$$$\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{m}^{\mathrm{2}} +{n}^{\mathrm{2}} }\neq\frac{\mathrm{1}}{\mathrm{2}}\underset{{r}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{r}^{\mathrm{2}} } \\ $$$$ \\ $$$${to}\:{check}: \\ $$$${S}=\frac{\mathrm{1}}{\mathrm{2}}\left[\left(\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{1}} }\right)^{\mathrm{2}} +\left(\frac{\mathrm{2}}{\mathrm{3}^{\mathrm{2}} }\right)^{\mathrm{2}} +\left(\frac{\mathrm{3}}{\mathrm{3}^{\mathrm{3}} }\right)^{\mathrm{2}} +…\infty=\frac{\mathrm{45}}{\mathrm{512}}\neq\frac{\mathrm{9}}{\mathrm{32}}\right. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Jan/19
$${thank}\:{you}\:{sir}…{i}\:{viewed}\:{it}\:{diffdrently}… \\ $$
Answered by rahul 19 last updated on 05/Jan/19
$${S}\:=\:\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{m}^{\mathrm{2}} {n}}{\mathrm{3}^{{m}} \left({n}.\mathrm{3}^{{m}} +{m}.\mathrm{3}^{{n}} \right)} \\ $$$${S}\:=\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{2}} {m}}{\mathrm{3}^{{n}} \left({m}.\mathrm{3}^{{n}} +{n}.\mathrm{3}^{{m}} \right)} \\ $$$$\Rightarrow\:\mathrm{2}{S}\:=\:\Sigma\Sigma\frac{{mn}}{{n}.\mathrm{3}^{{m}} +{m}.\mathrm{3}^{{n}} }\left[\frac{{m}}{\mathrm{3}^{{m}} }+\frac{{n}}{\mathrm{3}^{{n}} }\right]. \\ $$$$\Rightarrow\mathrm{2}{S}=\:\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{m}}{\mathrm{3}^{{m}} }\:\:.\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}}{\mathrm{3}^{{n}} } \\ $$$$\Rightarrow\mathrm{2}{S}=\:\frac{\mathrm{3}}{\mathrm{4}}\:×\:\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow\:{S}\:=\:\frac{\mathrm{9}}{\mathrm{32}\:}\:. \\ $$
Commented by mr W last updated on 05/Jan/19
$${very}\:{tricky}\:{sir}! \\ $$