Menu Close

Question-52627




Question Number 52627 by ajfour last updated on 10/Jan/19
Commented by ajfour last updated on 10/Jan/19
Find radius of such a circle.
Findradiusofsuchacircle.
Answered by mr W last updated on 10/Jan/19
Q(−h,ah^2 )  y′_Q =−2ah  eqn. of QP:  y=ah^2 +(((x+h))/(2ah))  y=ax^2   ⇒ah^2 +((x+h)/(2ah))=ax^2   ⇒x^2 −(x/(2a^2 h))−h^2 −(1/(2a^2 ))=0  ⇒x_P =(1/2)[(1/(2a^2 h))+(√((1/(4a^4 h^2 ))+4(h^2 +(1/(2a^2 )))))]  ⇒x_P =h+(1/(2a^2 h))  ⇒y_P =ah^2 +(1/(2ah))(2h+(1/(2a^2 h)))  ⇒y_P =ah^2 +(1/a)+(1/(4a^3 h^2 ))  PQ^2 =(h+(1/(2a^2 h))+h)^2 +(ah^2 +(1/a)+(1/(4a^3 h^2 ))−ah^2 )^2   PQ^2 =(2h+(1/(2a^2 h)))^2 +((1/a)+(1/(4a^3 h^2 )))^2 =y_P ^2   (2h+(1/(2a^2 h)))^2 +((1/a)+(1/(4a^3 h^2 )))^2 =(ah^2 +(1/a)+(1/(4a^3 h^2 )))^2   ⇒(2ah+(1/(2ah)))^2 =h^2 a^2 (2+a^2 h^2 +(1/(2a^2 h^2 )))  let λ=ah  ⇒(2λ+(1/(2λ)))^2 =λ^2 (2+λ^2 +(1/(2λ^2 )))  ⇒4λ^6 −8λ^4 −6λ^2 −1=0  ⇒λ≈1.6159  ⇒R=y_P =(1/a)(1+λ^2 +(1/(4λ^2 )))≈((3.7069)/a)
Q(h,ah2)yQ=2aheqn.ofQP:y=ah2+(x+h)2ahy=ax2ah2+x+h2ah=ax2x2x2a2hh212a2=0xP=12[12a2h+14a4h2+4(h2+12a2)]xP=h+12a2hyP=ah2+12ah(2h+12a2h)yP=ah2+1a+14a3h2PQ2=(h+12a2h+h)2+(ah2+1a+14a3h2ah2)2PQ2=(2h+12a2h)2+(1a+14a3h2)2=yP2(2h+12a2h)2+(1a+14a3h2)2=(ah2+1a+14a3h2)2(2ah+12ah)2=h2a2(2+a2h2+12a2h2)letλ=ah(2λ+12λ)2=λ2(2+λ2+12λ2)4λ68λ46λ21=0λ1.6159R=yP=1a(1+λ2+14λ2)3.7069a
Commented by mr W last updated on 11/Jan/19
Commented by ajfour last updated on 11/Jan/19
Very brilliant Sir! Thank you.
VerybrilliantSir!Thankyou.
Answered by ajfour last updated on 11/Jan/19
Let ∠QPF = θ , Q(−h,ah^2 )  (dy/dx)∣_Q =−tan θ = −2ah  y_P  = R = ah^2 +Rcos θ  x_P  = −h+Rsin θ  y_P  = ax_P ^2    ⇒  R=ah^2 +Rcos θ = a(Rsin θ−h)^2   ⇒ cos θ = aRsin^2 θ−2ahsin θ  ⇒ cos θ=((a^2 h^2 sin^2 θ)/(1−cos θ))−2ahsin θ  let us now use      ah=((tan θ)/2)  ⇒  cos θ = ((tan^2 θ sin^2 θ)/(4(1−cos θ)))−sin θtan θ  ⇒ 4(1−cos θ)cos^2 θ(cos θ+((sin^2 θ)/(cos θ)))=sin^4 θ  let cos θ =λ  ⇒ 4(1−λ)λ=(1−λ^2 )^2   ⇒ 4λ=(1+λ)^2 (1−λ)  ⇒  λ≈ 0.2956  R = ((ah^2 )/(1−cos θ)) = ((tan^2 θ)/(4a(1−cos θ)))     = ((((1/(cos^2 θ))−1))/(4a(1−cos θ))) = (((1+cos θ))/(4acos^2 θ))     R ≈ ((3.707)/a) .
LetQPF=θ,Q(h,ah2)dydxQ=tanθ=2ahyP=R=ah2+RcosθxP=h+RsinθyP=axP2R=ah2+Rcosθ=a(Rsinθh)2cosθ=aRsin2θ2ahsinθcosθ=a2h2sin2θ1cosθ2ahsinθletusnowuseah=tanθ2cosθ=tan2θsin2θ4(1cosθ)sinθtanθ4(1cosθ)cos2θ(cosθ+sin2θcosθ)=sin4θletcosθ=λ4(1λ)λ=(1λ2)24λ=(1+λ)2(1λ)λ0.2956R=ah21cosθ=tan2θ4a(1cosθ)=(1cos2θ1)4a(1cosθ)=(1+cosθ)4acos2θR3.707a.
Commented by mr W last updated on 11/Jan/19
thank you sir!  can you get λ exactly? it′s a cubic eqn.
thankyousir!canyougetλexactly?itsacubiceqn.
Commented by ajfour last updated on 12/Jan/19
Thanks sir, i meant i tried but  couldn′t match with the calculated  answer in one attempt.
Thankssir,imeantitriedbutcouldntmatchwiththecalculatedanswerinoneattempt.
Commented by ajfour last updated on 11/Jan/19
no sir, how come ?
nosir,howcome?
Commented by mr W last updated on 11/Jan/19
4λ=(1+λ)^2 (1−λ)  ⇒λ^3 +λ^2 +3λ−1=0   (cubic eqn.)  let λ=t+δ  t^3 +(3δ+1)t^2 +(3δ^2 +2δ+3)t+δ^3 +δ^2 +3δ−1=0  let 3δ+1=0⇒δ=−(1/3)  ⇒t^3 +(8/3)t−((52)/(27))=0  (u+v)^3 −3uv(u+v)−(u^3 +v^3 )=0  let t=u+v  −3uv=(8/3)  ⇒u^3 v^3 =−((512)/(729))  ⇒u^3 +v^3 =((52)/(27))  u^3  and v^3  are roots of  x^2 −((52)/(27))x−((512)/(729))=0  x=((2(13±3(√(33))))/(27))=u^3  and v^3   ⇒u=(((2(13+3(√(33)))))^(1/3) /3)  ⇒v=(((2(13−3(√(33)))))^(1/3) /3)  ⇒λ=t+δ=u+v+δ  ⇒λ=((((2(13+3(√(33)))))^(1/3) +((2(13−3(√(33)))))^(1/3) −1)/3)≈0.295598
4λ=(1+λ)2(1λ)λ3+λ2+3λ1=0(cubiceqn.)letλ=t+δt3+(3δ+1)t2+(3δ2+2δ+3)t+δ3+δ2+3δ1=0let3δ+1=0δ=13t3+83t5227=0(u+v)33uv(u+v)(u3+v3)=0lett=u+v3uv=83u3v3=512729u3+v3=5227u3andv3arerootsofx25227x512729=0x=2(13±333)27=u3andv3u=2(13+333)33v=2(13333)33λ=t+δ=u+v+δλ=2(13+333)3+2(13333)3130.295598

Leave a Reply

Your email address will not be published. Required fields are marked *