Question Number 52627 by ajfour last updated on 10/Jan/19
Commented by ajfour last updated on 10/Jan/19
$${Find}\:{radius}\:{of}\:{such}\:{a}\:{circle}. \\ $$
Answered by mr W last updated on 10/Jan/19
$${Q}\left(−{h},{ah}^{\mathrm{2}} \right) \\ $$$${y}'_{{Q}} =−\mathrm{2}{ah} \\ $$$${eqn}.\:{of}\:{QP}: \\ $$$${y}={ah}^{\mathrm{2}} +\frac{\left({x}+{h}\right)}{\mathrm{2}{ah}} \\ $$$${y}={ax}^{\mathrm{2}} \\ $$$$\Rightarrow{ah}^{\mathrm{2}} +\frac{{x}+{h}}{\mathrm{2}{ah}}={ax}^{\mathrm{2}} \\ $$$$\Rightarrow{x}^{\mathrm{2}} −\frac{{x}}{\mathrm{2}{a}^{\mathrm{2}} {h}}−{h}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}{a}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow{x}_{{P}} =\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{1}}{\mathrm{2}{a}^{\mathrm{2}} {h}}+\sqrt{\frac{\mathrm{1}}{\mathrm{4}{a}^{\mathrm{4}} {h}^{\mathrm{2}} }+\mathrm{4}\left({h}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}{a}^{\mathrm{2}} }\right)}\right] \\ $$$$\Rightarrow{x}_{{P}} ={h}+\frac{\mathrm{1}}{\mathrm{2}{a}^{\mathrm{2}} {h}} \\ $$$$\Rightarrow{y}_{{P}} ={ah}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}{ah}}\left(\mathrm{2}{h}+\frac{\mathrm{1}}{\mathrm{2}{a}^{\mathrm{2}} {h}}\right) \\ $$$$\Rightarrow{y}_{{P}} ={ah}^{\mathrm{2}} +\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{\mathrm{4}{a}^{\mathrm{3}} {h}^{\mathrm{2}} } \\ $$$${PQ}^{\mathrm{2}} =\left({h}+\frac{\mathrm{1}}{\mathrm{2}{a}^{\mathrm{2}} {h}}+{h}\right)^{\mathrm{2}} +\left({ah}^{\mathrm{2}} +\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{\mathrm{4}{a}^{\mathrm{3}} {h}^{\mathrm{2}} }−{ah}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$${PQ}^{\mathrm{2}} =\left(\mathrm{2}{h}+\frac{\mathrm{1}}{\mathrm{2}{a}^{\mathrm{2}} {h}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{\mathrm{4}{a}^{\mathrm{3}} {h}^{\mathrm{2}} }\right)^{\mathrm{2}} ={y}_{{P}} ^{\mathrm{2}} \\ $$$$\left(\mathrm{2}{h}+\frac{\mathrm{1}}{\mathrm{2}{a}^{\mathrm{2}} {h}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{\mathrm{4}{a}^{\mathrm{3}} {h}^{\mathrm{2}} }\right)^{\mathrm{2}} =\left({ah}^{\mathrm{2}} +\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{\mathrm{4}{a}^{\mathrm{3}} {h}^{\mathrm{2}} }\right)^{\mathrm{2}} \\ $$$$\Rightarrow\left(\mathrm{2}{ah}+\frac{\mathrm{1}}{\mathrm{2}{ah}}\right)^{\mathrm{2}} ={h}^{\mathrm{2}} {a}^{\mathrm{2}} \left(\mathrm{2}+{a}^{\mathrm{2}} {h}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}{a}^{\mathrm{2}} {h}^{\mathrm{2}} }\right) \\ $$$${let}\:\lambda={ah} \\ $$$$\Rightarrow\left(\mathrm{2}\lambda+\frac{\mathrm{1}}{\mathrm{2}\lambda}\right)^{\mathrm{2}} =\lambda^{\mathrm{2}} \left(\mathrm{2}+\lambda^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}\lambda^{\mathrm{2}} }\right) \\ $$$$\Rightarrow\mathrm{4}\lambda^{\mathrm{6}} −\mathrm{8}\lambda^{\mathrm{4}} −\mathrm{6}\lambda^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\lambda\approx\mathrm{1}.\mathrm{6159} \\ $$$$\Rightarrow{R}={y}_{{P}} =\frac{\mathrm{1}}{{a}}\left(\mathrm{1}+\lambda^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}\lambda^{\mathrm{2}} }\right)\approx\frac{\mathrm{3}.\mathrm{7069}}{{a}} \\ $$
Commented by mr W last updated on 11/Jan/19
Commented by ajfour last updated on 11/Jan/19
$${Very}\:{brilliant}\:{Sir}!\:{Thank}\:{you}. \\ $$
Answered by ajfour last updated on 11/Jan/19
$${Let}\:\angle{QPF}\:=\:\theta\:,\:{Q}\left(−{h},{ah}^{\mathrm{2}} \right) \\ $$$$\frac{{dy}}{{dx}}\mid_{{Q}} =−\mathrm{tan}\:\theta\:=\:−\mathrm{2}{ah} \\ $$$${y}_{{P}} \:=\:{R}\:=\:{ah}^{\mathrm{2}} +{R}\mathrm{cos}\:\theta \\ $$$${x}_{{P}} \:=\:−{h}+{R}\mathrm{sin}\:\theta \\ $$$${y}_{{P}} \:=\:{ax}_{{P}} ^{\mathrm{2}} \: \\ $$$$\Rightarrow\:\:{R}={ah}^{\mathrm{2}} +{R}\mathrm{cos}\:\theta\:=\:{a}\left({R}\mathrm{sin}\:\theta−{h}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{cos}\:\theta\:=\:{aR}\mathrm{sin}\:^{\mathrm{2}} \theta−\mathrm{2}{ah}\mathrm{sin}\:\theta \\ $$$$\Rightarrow\:\mathrm{cos}\:\theta=\frac{{a}^{\mathrm{2}} {h}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta}{\mathrm{1}−\mathrm{cos}\:\theta}−\mathrm{2}{ah}\mathrm{sin}\:\theta \\ $$$${let}\:{us}\:{now}\:{use}\:\:\:\:\:\:{ah}=\frac{\mathrm{tan}\:\theta}{\mathrm{2}} \\ $$$$\Rightarrow\:\:\mathrm{cos}\:\theta\:=\:\frac{\mathrm{tan}\:^{\mathrm{2}} \theta\:\mathrm{sin}\:^{\mathrm{2}} \theta}{\mathrm{4}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}−\mathrm{sin}\:\theta\mathrm{tan}\:\theta \\ $$$$\Rightarrow\:\mathrm{4}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)\mathrm{cos}\:^{\mathrm{2}} \theta\left(\mathrm{cos}\:\theta+\frac{\mathrm{sin}\:^{\mathrm{2}} \theta}{\mathrm{cos}\:\theta}\right)=\mathrm{sin}\:^{\mathrm{4}} \theta \\ $$$${let}\:\mathrm{cos}\:\theta\:=\lambda \\ $$$$\Rightarrow\:\mathrm{4}\left(\mathrm{1}−\lambda\right)\lambda=\left(\mathrm{1}−\lambda^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{4}\lambda=\left(\mathrm{1}+\lambda\right)^{\mathrm{2}} \left(\mathrm{1}−\lambda\right) \\ $$$$\Rightarrow\:\:\lambda\approx\:\mathrm{0}.\mathrm{2956} \\ $$$${R}\:=\:\frac{{ah}^{\mathrm{2}} }{\mathrm{1}−\mathrm{cos}\:\theta}\:=\:\frac{\mathrm{tan}\:^{\mathrm{2}} \theta}{\mathrm{4}{a}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)} \\ $$$$\:\:\:=\:\frac{\left(\frac{\mathrm{1}}{\mathrm{cos}\:^{\mathrm{2}} \theta}−\mathrm{1}\right)}{\mathrm{4}{a}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}\:=\:\frac{\left(\mathrm{1}+\mathrm{cos}\:\theta\right)}{\mathrm{4}{a}\mathrm{cos}\:^{\mathrm{2}} \theta}\: \\ $$$$\:\:{R}\:\approx\:\frac{\mathrm{3}.\mathrm{707}}{{a}}\:. \\ $$
Commented by mr W last updated on 11/Jan/19
$${thank}\:{you}\:{sir}! \\ $$$${can}\:{you}\:{get}\:\lambda\:{exactly}?\:{it}'{s}\:{a}\:{cubic}\:{eqn}. \\ $$
Commented by ajfour last updated on 12/Jan/19
$${Thanks}\:{sir},\:{i}\:{meant}\:{i}\:{tried}\:{but} \\ $$$${couldn}'{t}\:{match}\:{with}\:{the}\:{calculated} \\ $$$${answer}\:{in}\:{one}\:{attempt}. \\ $$
Commented by ajfour last updated on 11/Jan/19
$${no}\:{sir},\:{how}\:{come}\:? \\ $$
Commented by mr W last updated on 11/Jan/19
$$\mathrm{4}\lambda=\left(\mathrm{1}+\lambda\right)^{\mathrm{2}} \left(\mathrm{1}−\lambda\right) \\ $$$$\Rightarrow\lambda^{\mathrm{3}} +\lambda^{\mathrm{2}} +\mathrm{3}\lambda−\mathrm{1}=\mathrm{0}\:\:\:\left({cubic}\:{eqn}.\right) \\ $$$${let}\:\lambda={t}+\delta \\ $$$${t}^{\mathrm{3}} +\left(\mathrm{3}\delta+\mathrm{1}\right){t}^{\mathrm{2}} +\left(\mathrm{3}\delta^{\mathrm{2}} +\mathrm{2}\delta+\mathrm{3}\right){t}+\delta^{\mathrm{3}} +\delta^{\mathrm{2}} +\mathrm{3}\delta−\mathrm{1}=\mathrm{0} \\ $$$${let}\:\mathrm{3}\delta+\mathrm{1}=\mathrm{0}\Rightarrow\delta=−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow{t}^{\mathrm{3}} +\frac{\mathrm{8}}{\mathrm{3}}{t}−\frac{\mathrm{52}}{\mathrm{27}}=\mathrm{0} \\ $$$$\left({u}+{v}\right)^{\mathrm{3}} −\mathrm{3}{uv}\left({u}+{v}\right)−\left({u}^{\mathrm{3}} +{v}^{\mathrm{3}} \right)=\mathrm{0} \\ $$$${let}\:{t}={u}+{v} \\ $$$$−\mathrm{3}{uv}=\frac{\mathrm{8}}{\mathrm{3}} \\ $$$$\Rightarrow{u}^{\mathrm{3}} {v}^{\mathrm{3}} =−\frac{\mathrm{512}}{\mathrm{729}} \\ $$$$\Rightarrow{u}^{\mathrm{3}} +{v}^{\mathrm{3}} =\frac{\mathrm{52}}{\mathrm{27}} \\ $$$${u}^{\mathrm{3}} \:{and}\:{v}^{\mathrm{3}} \:{are}\:{roots}\:{of} \\ $$$${x}^{\mathrm{2}} −\frac{\mathrm{52}}{\mathrm{27}}{x}−\frac{\mathrm{512}}{\mathrm{729}}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{2}\left(\mathrm{13}\pm\mathrm{3}\sqrt{\mathrm{33}}\right)}{\mathrm{27}}={u}^{\mathrm{3}} \:{and}\:{v}^{\mathrm{3}} \\ $$$$\Rightarrow{u}=\frac{\sqrt[{\mathrm{3}}]{\mathrm{2}\left(\mathrm{13}+\mathrm{3}\sqrt{\mathrm{33}}\right)}}{\mathrm{3}} \\ $$$$\Rightarrow{v}=\frac{\sqrt[{\mathrm{3}}]{\mathrm{2}\left(\mathrm{13}−\mathrm{3}\sqrt{\mathrm{33}}\right)}}{\mathrm{3}} \\ $$$$\Rightarrow\lambda={t}+\delta={u}+{v}+\delta \\ $$$$\Rightarrow\lambda=\frac{\sqrt[{\mathrm{3}}]{\mathrm{2}\left(\mathrm{13}+\mathrm{3}\sqrt{\mathrm{33}}\right)}+\sqrt[{\mathrm{3}}]{\mathrm{2}\left(\mathrm{13}−\mathrm{3}\sqrt{\mathrm{33}}\right)}−\mathrm{1}}{\mathrm{3}}\approx\mathrm{0}.\mathrm{295598} \\ $$