Question Number 52787 by peter frank last updated on 13/Jan/19
Answered by tanmay.chaudhury50@gmail.com last updated on 13/Jan/19
$${flow}\:{of}\:{fluid}\:{in}\:{pipe}\:{formula} \\ $$$$\frac{{dV}}{{dt}}=\frac{\bigtriangleup{p}×\pi{r}^{\mathrm{4}} }{\mathrm{8}\eta{l}}=\frac{\bigtriangleup{p}}{\frac{\mathrm{8}\eta{l}}{\pi{r}^{\mathrm{4}} }} \\ $$$${compare}\:{it}\:{with}\:{flow}\:{of}\:{current}\:{in}\:{resistance}.. \\ $$$${here}\:{current}\:{i}\rightarrow\frac{{dV}}{{dt}} \\ $$$${potential}\:{difference}\rightarrow\bigtriangleup{p} \\ $$$${resistance}\rightarrow\frac{\mathrm{8}\eta{l}}{\pi{r}^{\mathrm{4}} } \\ $$$${so}\:{cappilary}\:{joined}\:{in}\:{series}\:{is}\:{equivalant} \\ $$$${to}\:{resistance}\:{in}\:{series}\:{connection} \\ $$$$\left({R}_{{eq}} ={R}_{\mathrm{1}} +{R}_{\mathrm{2}} +{R}_{\mathrm{3}} +…\:{Resistance}\:{in}\:{series}\right) \\ $$$${same}\:{way}\:\:{equivalant}\:{viscous}\:{resitance} \\ $$$$\frac{\mathrm{8}\eta{l}_{\mathrm{1}} }{\pi{r}_{\mathrm{1}} ^{\mathrm{4}} }+\frac{\mathrm{8}\eta{l}_{\mathrm{2}} }{\pi{r}_{\mathrm{2}} ^{\mathrm{4}} }+\frac{\mathrm{8}\eta{l}_{\mathrm{3}} }{\pi{r}_{\mathrm{3}} ^{\mathrm{4}} } \\ $$$${now}\:{use}\:{formula}\:\:\:{current}=\frac{{p}.{d}}{{resistance}}=\frac{{V}}{{R}_{\mathrm{1}} +{R}_{\mathrm{2}} +{R}_{\mathrm{3}} }={i} \\ $$$${similar}\:{way} \\ $$$${rate}\:{of}\:{flow}\:\frac{{dV}}{{dt}}=\frac{\bigtriangleup{p}}{\frac{\mathrm{8}\eta{l}_{\mathrm{1}} }{\pi{r}_{\mathrm{1}} ^{\mathrm{4}} }+\frac{\mathrm{8}\eta{l}_{\mathrm{2}} }{\pi{r}_{\mathrm{2}} ^{\mathrm{4}} +}+\frac{\mathrm{8}\eta{l}_{\mathrm{3}} }{\pi{r}_{\mathrm{3}} ^{\mathrm{4}} }}=\frac{\pi\bigtriangleup{p}}{\mathrm{8}\eta\left(\frac{{l}_{\mathrm{1}} }{{r}_{\mathrm{1}} ^{\mathrm{4}} }+\frac{{l}_{\mathrm{2}} }{{r}_{\mathrm{2}} ^{\mathrm{4}} }+\frac{{l}_{\mathrm{3}} }{{r}_{\mathrm{3}} ^{\mathrm{4}} }\right)} \\ $$$${so}\:{answer}\:{is} \\ $$$$\frac{{dV}}{{dt}}=\frac{\pi{p}}{\mathrm{8}\eta\left(\frac{{l}_{\mathrm{1}} }{{r}_{\mathrm{1}} ^{\mathrm{4}} }+\frac{{l}_{\mathrm{2}} }{{r}_{\mathrm{2}} ^{\mathrm{4}} }+\frac{{l}_{\mathrm{3}} }{{r}_{\mathrm{3}} ^{\mathrm{4}} }\right)}\:\:\:\left[{given}\:\bigtriangleup{p}={p}\right] \\ $$
Commented by peter frank last updated on 13/Jan/19
$${thanks} \\ $$
Answered by peter frank last updated on 13/Jan/19