Question Number 52841 by Tawa1 last updated on 13/Jan/19
Commented by maxmathsup by imad last updated on 14/Jan/19
$$\:\pi\:\rightarrow\mathrm{180}^{{o}} \\ $$$$\:\alpha\rightarrow{k}^{{o}} \:\Rightarrow\mathrm{180}^{} .\alpha\:={k}\pi\:\Rightarrow\alpha\:=\frac{{k}\pi}{\mathrm{180}}\:\Rightarrow \\ $$$${S}=\sum_{{k}=\mathrm{0}} ^{\mathrm{90}} \:{sin}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{180}}\right)\:\:{generally}\:{let}\:{determine}\:{S}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:{sin}^{\mathrm{2}} \left(\frac{{k}\pi}{\mathrm{180}}\right)\:\Rightarrow \\ $$$${S}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\mathrm{1}−{cos}\left(\frac{{k}\pi}{\mathrm{90}}\right)}{\mathrm{2}}\:=\frac{{n}+\mathrm{1}}{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{2}}\sum_{{k}=\mathrm{0}} ^{{n}} \:{cos}\left(\frac{{k}\pi}{\mathrm{90}}\right)\:{but} \\ $$$$\sum_{{k}=\mathrm{0}} ^{{n}} \:{cos}\left(\frac{{k}\pi}{\mathrm{90}}\right)\:={Re}\left(\sum_{{k}=\mathrm{0}} ^{{n}} \:{e}^{{i}\frac{{k}\pi}{\mathrm{90}}} \right)\:\:{and}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{e}^{{i}\frac{{k}\pi}{\mathrm{90}}} \:=\sum_{{k}=\mathrm{0}} ^{{n}} \:\left({e}^{\frac{{i}\pi}{\mathrm{90}}} \right)^{{k}} \\ $$$$=\frac{\mathrm{1}−{e}^{{i}\left({n}+\mathrm{1}\right)\frac{\pi}{\mathrm{90}}} }{\mathrm{1}−{e}^{\frac{{i}\pi}{\mathrm{90}}} }\:=\frac{\mathrm{1}−{cos}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{90}}\right)−{isin}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{90}}\right)}{\mathrm{1}−{cos}\left(\frac{\pi}{\mathrm{90}}\right)−{i}\:{sin}\left(\frac{\pi}{\mathrm{90}}\right)}\: \\ $$$$=\frac{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{180}}\right)−\mathrm{2}{i}\:{sin}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{180}}\right){cos}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{180}}\right)}{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{180}}\right)−\mathrm{2}{isin}\left(\frac{\pi}{\mathrm{180}}\right){cos}\left(\frac{\pi}{\mathrm{180}}\right)} \\ $$$$=\frac{−{isin}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{180}}\right)\left(\:{e}^{{i}\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{180}}} \right)}{−{isin}\left(\frac{\pi}{\mathrm{180}}\right)\:{e}^{\frac{{i}\pi}{\mathrm{180}}} }\:=\frac{{sin}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{180}}\right)}{{sin}\left(\frac{\pi}{\mathrm{180}}\right)}\:{e}^{\frac{{in}\pi}{\mathrm{180}}} \:\:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{0}} ^{{n}} \:{cos}\left(\frac{{k}\pi}{\mathrm{90}}\right)\:=\frac{{sin}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{180}}\right){cos}\left(\frac{{n}\pi}{\mathrm{180}}\right)}{{sin}\left(\frac{\pi}{\mathrm{180}}\right)}\:\Rightarrow \\ $$$${S}_{{n}} =\frac{{n}+\mathrm{1}}{\mathrm{2}}\:−\frac{{sin}\left(\frac{\left({n}+\mathrm{1}\right)\pi}{\mathrm{180}}\right){cos}\left(\frac{{n}\pi}{\mathrm{180}}\right)}{{sin}\left(\frac{\pi}{\mathrm{180}}\right)}\:\Rightarrow\:{S}\:={S}_{\mathrm{90}} =\frac{\mathrm{91}}{\mathrm{2}}\:−\frac{{sin}\left(\frac{\mathrm{91}\pi}{\mathrm{180}}\right){cos}\left(\frac{\pi}{\mathrm{2}}\right)}{{sin}\left(\frac{\pi}{\mathrm{180}}\right)} \\ $$$$=\frac{\mathrm{91}}{\mathrm{2}}\:−\mathrm{0}\:\Rightarrow\:{S}=\frac{\mathrm{91}}{\mathrm{2}}\:. \\ $$$$ \\ $$
Commented by Tawa1 last updated on 16/Jan/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}\: \\ $$
Commented by Tawa1 last updated on 17/Jan/19
$$\mathrm{Sir},\:\:\mathrm{please}\:\mathrm{explain}\:\mathrm{from}\:\mathrm{here}\:\mathrm{sir}. \\ $$$$\:\:\:\:\:\mathrm{How}\:\:\:\:\:\mathrm{S}_{\mathrm{n}} \:=\:\sum_{\mathrm{k}\:=\:\mathrm{0}} ^{\mathrm{n}} \:\mathrm{sin}^{\mathrm{2}} \left(\frac{\mathrm{k}\pi}{\mathrm{180}}\right)\:\:\:\:\:\mathrm{becomes}\:\:\: \\ $$$$\mathrm{S}_{\mathrm{n}} \:\:=\:\:\sum_{\mathrm{k}\:=\:\mathrm{0}} ^{\mathrm{n}} \:\:\:\frac{\mathrm{1}\:−\:\mathrm{cos}\left(\frac{\mathrm{k}\pi}{\mathrm{90}}\right)}{\mathrm{2}}\:\:\:=\:\:\frac{\mathrm{n}\:+\:\mathrm{1}}{\mathrm{2}}\:−\:\frac{\mathrm{1}}{\mathrm{2}}\:\sum_{\mathrm{k}\:=\:\mathrm{0}} ^{\mathrm{n}\:} \:\mathrm{cos}\left(\frac{\mathrm{k}\pi}{\mathrm{90}}\right) \\ $$$$ \\ $$$$\mathrm{And}\:\mathrm{how}\:\mathrm{2}\:\mathrm{becomes}\:\:\:\:\:\mathrm{1}\:−\:\mathrm{e}^{\mathrm{i}\frac{\pi}{\mathrm{90}}} \\ $$$$\mathrm{please}\:\mathrm{sir}. \\ $$
Commented by maxmathsup by imad last updated on 19/Jan/19
$${sir}\:{take}\:{x}=\frac{{k}\pi}{\mathrm{180}}\:{and}\:{use}\:{formulalae}\:{sin}^{\mathrm{2}} \left({x}\right)=\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}} \\ $$$${also}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\mathrm{1}−{cos}\left(\frac{{k}\pi}{\mathrm{90}}\right)}{\mathrm{2}}\:=\frac{\mathrm{1}}{\mathrm{2}}\sum_{{k}=\mathrm{0}} ^{{n}} \left(\mathrm{1}\right)\:−\frac{\mathrm{1}}{\mathrm{2}}\sum_{{k}=\mathrm{0}} ^{{n}} {cos}\left(\frac{{k}\pi}{\mathrm{90}}\right)\:{and}\: \\ $$$$\sum_{{k}=\mathrm{0}} ^{{n}} \left(\mathrm{1}\right)={n}+\mathrm{1}\:\left({look}\:{that}\:\sum_{{k}=\mathrm{0}} ^{{n}} {a}=\left({n}+\mathrm{1}\right){a}\right) \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 14/Jan/19
$$\mathrm{1}+\mathrm{89}=\mathrm{90}\:\:{so}\:\:{sin}^{\mathrm{2}} \mathrm{1}+{sin}^{\mathrm{2}} \mathrm{89} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={sin}^{\mathrm{2}} \mathrm{1}+{sin}^{\mathrm{2}} \left(\mathrm{90}−\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={sin}^{\mathrm{2}} \mathrm{1}+{cos}^{\mathrm{2}} \mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{1} \\ $$$${similarly}.. \\ $$$$\mathrm{2}+\mathrm{88}=\mathrm{90} \\ $$$$… \\ $$$$… \\ $$$$\mathrm{45}+\mathrm{45}=\mathrm{90} \\ $$$$ \\ $$$${s}=\left({sin}^{\mathrm{2}} \mathrm{1}+{sin}^{\mathrm{2}} \mathrm{2}+{sin}^{\mathrm{2}} \mathrm{3}+…+{sin}^{\mathrm{2}} \mathrm{89}\right)+{sin}^{\mathrm{2}} \mathrm{90} \\ $$$${s}=\left({sin}^{\mathrm{2}} \mathrm{89}+{sin}^{\mathrm{2}} \mathrm{88}+{sin}^{\mathrm{2}} \mathrm{87}+..+{sin}^{\mathrm{2}} \mathrm{1}\right)+{sin}^{\mathrm{2}} \mathrm{90} \\ $$$$\:\mathrm{2}{s}=\left[\left({sin}^{\mathrm{2}} \mathrm{1}+{sin}^{\mathrm{2}} \mathrm{89}\right)+\left({sin}^{\mathrm{2}} \mathrm{2}+{sin}^{\mathrm{2}} \mathrm{88}\right)+..+\left({sin}^{\mathrm{2}} \mathrm{89}+{sin}^{\mathrm{2}} \mathrm{1}\right)\right]+\left(\mathrm{1}+\mathrm{1}\right) \\ $$$$\mathrm{2}{s}=\left[\mathrm{1}+\mathrm{1}+\mathrm{1}…\mathrm{89}{times}\right]+\mathrm{2} \\ $$$${s}=\frac{\mathrm{91}}{\mathrm{2}}=\mathrm{45}.\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 14/Jan/19
$${thank}\:{you}..{God}\:{bless}\:{all}… \\ $$
Commented by Tawa1 last updated on 14/Jan/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$