Menu Close

Question-52881




Question Number 52881 by ajfour last updated on 14/Jan/19
Commented by ajfour last updated on 14/Jan/19
To find r in terms of a,b,c.
Tofindrintermsofa,b,c.
Commented by mr W last updated on 14/Jan/19
can it be confirmed that  r=((2bc)/(a+b+c))(√(((a+b−c)(a+c−b))/((a+b+c)(b+c−a))))
canitbeconfirmedthatr=2bca+b+c(a+bc)(a+cb)(a+b+c)(b+ca)
Commented by ajfour last updated on 14/Jan/19
nice result Sir, how d′ya get this ?
niceresultSir,howdyagetthis?
Commented by behi83417@gmail.com last updated on 14/Jan/19
r=((bc)/p)tg(A/2). it is true sir mrW.
r=bcptgA2.itistruesirmrW.
Commented by MJS last updated on 14/Jan/19
...and please re−check 52061, I get a different  result
andpleaserecheck52061,Igetadifferentresult
Commented by MJS last updated on 14/Jan/19
see my answer to qu. 52806
seemyanswertoqu.52806
Commented by mr W last updated on 15/Jan/19
MJS sir: your result for r is the same.  it can also be formed to  r=((2bc)/(a+b+c))(√(((a+b−c)(a+c−b))/((a+b+c)(b+c−a))))
MJSsir:yourresultforristhesame.itcanalsobeformedtor=2bca+b+c(a+bc)(a+cb)(a+b+c)(b+ca)
Commented by mr W last updated on 15/Jan/19
MJS sir: your result for Q52061 seems  not to be correct.
MJSsir:yourresultforQ52061seemsnottobecorrect.
Commented by MJS last updated on 15/Jan/19
I will look into 52061 once more  I saw that the other result is the same as yours,  I thought you might have achieved it throuhh  a different path
Iwilllookinto52061oncemoreIsawthattheotherresultisthesameasyours,Ithoughtyoumighthaveachieveditthrouhhadifferentpath
Answered by ajfour last updated on 15/Jan/19
From power of point Q w.r.t.   circumcircle:     (2Rcos φ−(r/(sin θ)))(r/(sin θ)) = r(2R−r)  ___________________________  ⇒  2Rcos φ = (r/(sin θ))+(2R−r)sin θ                                                          ......(i)  ___________________________  further   Rcos (θ+φ)=(b/2)   &                         Rcos (θ−φ)=(c/2)  Adding:   2Rcos φcos θ=((b+c)/2)  So  using (i)   (r/(tan θ))+Rsin 2θ−((rsin^2 θ)/(tan θ))=((b+c)/2)  but   ((sin 2θ)/a) = (1/(2R))    ⇒    ((rcos^2 𝛉)/(tan 𝛉)) =((b+c−a)/2)         r = (((b+c−a))/(1+cos A))(√((1−cos A)/(1+cos A)))        = (((b+c−a))/((((2bc+b^2 +c^2 −a^2 )/(2bc)))))(√((2bc−b^2 −c^2 +a^2 )/(2bc+b^2 +c^2 −a^2 )))  r = ((2bc)/((a+b+c)))(√(((a+b−c)(a+c−b))/((b+c+a)(b+c−a)))) .
FrompowerofpointQw.r.t.circumcircle:(2Rcosϕrsinθ)rsinθ=r(2Rr)___________________________2Rcosϕ=rsinθ+(2Rr)sinθ(i)___________________________furtherRcos(θ+ϕ)=b2&Rcos(θϕ)=c2Adding:2Rcosϕcosθ=b+c2Sousing(i)rtanθ+Rsin2θrsin2θtanθ=b+c2butsin2θa=12Rrcos2θtanθ=b+ca2r=(b+ca)1+cosA1cosA1+cosA=(b+ca)(2bc+b2+c2a22bc)2bcb2c2+a22bc+b2+c2a2r=2bc(a+b+c)(a+bc)(a+cb)(b+c+a)(b+ca).
Commented by mr W last updated on 15/Jan/19
����������

Leave a Reply

Your email address will not be published. Required fields are marked *