Menu Close

Question-52938




Question Number 52938 by ajfour last updated on 15/Jan/19
Commented by ajfour last updated on 16/Jan/19
Find x, tension T, and 𝛉.  Assume friction is not present  and rod is in equilibrium.
Findx,tensionT,andθ.Assumefrictionisnotpresentandrodisinequilibrium.
Commented by ajfour last updated on 16/Jan/19
Commented by ajfour last updated on 16/Jan/19
tan α = (4/3)  scos α+b=Lcos θ    ⇒  ((3s)/5)+b=5acos θ   ...(i)     xsin γ = scos α  ⇒   5xsin γ=3s         ...(ii)    ssin α = Lsin θ  ⇒     4s =25asin θ     ...(iii)     xcos γ+ssin α = 4a  ⇒  5xcos γ+4s=20a    ...(iv)        btan β = 4a                  ....(v)    (7a−x)cos β = b         ....(vi)    Ncos α+Tcos γ+R+Tsin β = Mg                                                     .....(vii)    Nsin α+Tsin γ = Tcos β    ...(viii)    ΣTorque about B = 0  ⇒ Mgcos θ= Nsin (θ+(π/2)−α)                         +Tsin (θ+(π/2)−γ)     ...(ix)  unknowns being   θ,x b,s,β,γ,R,N,T .  Solving all these eqs. in my little  notebook i obtained,      (x/a)=(√(((625)/(16))sin^2 θ−40sin θ+16))      T = ((4Mgcos θ)/(4cos (γ−θ)+(3cos θ+4sin θ)(cos β−cos γ)))     tan β = ((16)/(5(4cos θ−3sin θ)))     tan γ = ((15sin θ)/(16−20sin θ))  while θ is found from  ((25)/4)(√(sin^2 (sin^(−1) (4/5)−θ)+((256)/(625))))      +(√(((625)/(16))sin^2 θ−40sin θ+16)) = 7   ⇒   𝛉≈ 31.86°   ,  x≈ 2.402a
tanα=43scosα+b=Lcosθ3s5+b=5acosθ(i)xsinγ=scosα5xsinγ=3s(ii)ssinα=Lsinθ4s=25asinθ(iii)xcosγ+ssinα=4a5xcosγ+4s=20a(iv)btanβ=4a.(v)(7ax)cosβ=b.(vi)Ncosα+Tcosγ+R+Tsinβ=Mg..(vii)Nsinα+Tsinγ=Tcosβ(viii)ΣTorqueaboutB=0Mgcosθ=Nsin(θ+π2α)+Tsin(θ+π2γ)(ix)unknownsbeingθ,xb,s,β,γ,R,N,T.Solvingalltheseeqs.inmylittlenotebookiobtained,xa=62516sin2θ40sinθ+16T=4Mgcosθ4cos(γθ)+(3cosθ+4sinθ)(cosβcosγ)tanβ=165(4cosθ3sinθ)tanγ=15sinθ1620sinθwhileθisfoundfrom254sin2(sin145θ)+256625+62516sin2θ40sinθ+16=7θ31.86°,x2.402a

Leave a Reply

Your email address will not be published. Required fields are marked *