Menu Close

Question-53031




Question Number 53031 by behi83417@gmail.com last updated on 16/Jan/19
Commented by behi83417@gmail.com last updated on 16/Jan/19
AB<CB.  ∡ABE=∡EBF=∡FBC  ......show that:    ((BE)/(BF)) >1  .
$${AB}<{CB}. \\ $$$$\measuredangle{ABE}=\measuredangle{EBF}=\measuredangle{FBC} \\ $$$$……{show}\:{that}:\:\:\:\:\frac{\boldsymbol{\mathrm{BE}}}{\boldsymbol{\mathrm{BF}}}\:>\mathrm{1}\:\:. \\ $$
Answered by ajfour last updated on 16/Jan/19
let the three equal angles be θ.  ((BE)/(sin A)) = ((AB)/(sin ∠AEB))    &  ((BF)/(sin C)) =  ((BC)/(sin ∠CFB))   AB < BC   ⇒ ∠C < ∠A ⇒  sin C < sin A  further   ∠AEB+∠A+θ = ∠CFB+∠C+θ  ⇒ ∠CFB > ∠ AEB  from eqs. in first and second line  ((BE)/(BF)) = ((sin A)/(sin C))×((sin ∠CFB)/(sin ∠AEB))           = (>1)×(>1) > 1   hence  BE > BF .
$${let}\:{the}\:{three}\:{equal}\:{angles}\:{be}\:\theta. \\ $$$$\frac{{BE}}{\mathrm{sin}\:{A}}\:=\:\frac{{AB}}{\mathrm{sin}\:\angle{AEB}}\:\:\:\:\& \\ $$$$\frac{{BF}}{\mathrm{sin}\:{C}}\:=\:\:\frac{{BC}}{\mathrm{sin}\:\angle{CFB}} \\ $$$$\:{AB}\:<\:{BC}\:\:\:\Rightarrow\:\angle{C}\:<\:\angle{A}\:\Rightarrow\:\:\mathrm{sin}\:{C}\:<\:\mathrm{sin}\:{A} \\ $$$${further} \\ $$$$\:\angle{AEB}+\angle{A}+\theta\:=\:\angle{CFB}+\angle{C}+\theta \\ $$$$\Rightarrow\:\angle{CFB}\:>\:\angle\:{AEB} \\ $$$${from}\:{eqs}.\:{in}\:{first}\:{and}\:{second}\:{line} \\ $$$$\frac{{BE}}{{BF}}\:=\:\frac{\mathrm{sin}\:{A}}{\mathrm{sin}\:{C}}×\frac{\mathrm{sin}\:\angle{CFB}}{\mathrm{sin}\:\angle{AEB}} \\ $$$$\:\:\:\:\:\:\:\:\:=\:\left(>\mathrm{1}\right)×\left(>\mathrm{1}\right)\:>\:\mathrm{1}\: \\ $$$${hence}\:\:{BE}\:>\:{BF}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *