Menu Close

Question-53145




Question Number 53145 by ajfour last updated on 18/Jan/19
Commented by ajfour last updated on 18/Jan/19
If entire string length is l, find θ  in terms of l,a, r, and R.  Or find l from a,r,R, and θ.
$${If}\:{entire}\:{string}\:{length}\:{is}\:{l},\:{find}\:\theta \\ $$$${in}\:{terms}\:{of}\:{l},{a},\:{r},\:{and}\:{R}. \\ $$$${Or}\:{find}\:{l}\:{from}\:{a},{r},{R},\:{and}\:\theta. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 18/Jan/19
Answered by ajfour last updated on 18/Jan/19
l=a+R(π+θ+2cot (θ/2))            +r((π/2)−(θ/2)+tan (θ/2)−(2/(sin θ)))   (my answer).
$${l}={a}+{R}\left(\pi+\theta+\mathrm{2cot}\:\frac{\theta}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:+{r}\left(\frac{\pi}{\mathrm{2}}−\frac{\theta}{\mathrm{2}}+\mathrm{tan}\:\frac{\theta}{\mathrm{2}}−\frac{\mathrm{2}}{\mathrm{sin}\:\theta}\right)\: \\ $$$$\left({my}\:{answer}\right). \\ $$
Answered by mr W last updated on 18/Jan/19
Commented by mr W last updated on 18/Jan/19
AB=a  BC^(⌢) =r((π/2)−(θ/2))  CD=HD−HC=(R/(tan (θ/2)))−(r/(tan θ))  DE_(⌣) =R(π+θ)  EF=HE−HF=(R/(tan (θ/2)))−(r/(sin θ))  ⇒l=a+r((π/2)−(θ/2))+(R/(tan (θ/2)))−(r/(tan θ))+R(π+θ)+(R/(tan (θ/2)))−(r/(sin θ))  ⇒l=a+r((π/2)−(θ/2)−(1/(tan θ))−(1/(sin θ)))+R(π+θ+(2/(tan (θ/2))))
$${AB}={a} \\ $$$$\overset{\frown} {{BC}}={r}\left(\frac{\pi}{\mathrm{2}}−\frac{\theta}{\mathrm{2}}\right) \\ $$$${CD}={HD}−{HC}=\frac{{R}}{\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}−\frac{{r}}{\mathrm{tan}\:\theta} \\ $$$$\underset{\smile} {{DE}}={R}\left(\pi+\theta\right) \\ $$$${EF}={HE}−{HF}=\frac{{R}}{\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}−\frac{{r}}{\mathrm{sin}\:\theta} \\ $$$$\Rightarrow{l}={a}+{r}\left(\frac{\pi}{\mathrm{2}}−\frac{\theta}{\mathrm{2}}\right)+\frac{{R}}{\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}−\frac{{r}}{\mathrm{tan}\:\theta}+{R}\left(\pi+\theta\right)+\frac{{R}}{\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}−\frac{{r}}{\mathrm{sin}\:\theta} \\ $$$$\Rightarrow{l}={a}+{r}\left(\frac{\pi}{\mathrm{2}}−\frac{\theta}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{tan}\:\theta}−\frac{\mathrm{1}}{\mathrm{sin}\:\theta}\right)+{R}\left(\pi+\theta+\frac{\mathrm{2}}{\mathrm{tan}\:\frac{\theta}{\mathrm{2}}}\right) \\ $$
Commented by Otchere Abdullai last updated on 18/Jan/19
thus my prof W
$${thus}\:{my}\:{prof}\:{W} \\ $$
Commented by ajfour last updated on 18/Jan/19
Thank you very much Sir.
$${Thank}\:{you}\:{very}\:{much}\:{Sir}.\: \\ $$
Commented by mr W last updated on 18/Jan/19
we had some difference in our results.  do you know the reason sir?
$${we}\:{had}\:{some}\:{difference}\:{in}\:{our}\:{results}. \\ $$$${do}\:{you}\:{know}\:{the}\:{reason}\:{sir}? \\ $$
Commented by ajfour last updated on 18/Jan/19
yes, they are the same,  tan (θ/2)−(1/(2sin (θ/2)cos (θ/2))) = −(1/(tan θ))  hence  tan (θ/2)−(2/(sin θ)) = −(1/(tan θ))−(1/(sin θ))^.
$${yes},\:{they}\:{are}\:{the}\:{same}, \\ $$$$\mathrm{tan}\:\frac{\theta}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2sin}\:\frac{\theta}{\mathrm{2}}\mathrm{cos}\:\frac{\theta}{\mathrm{2}}}\:=\:−\frac{\mathrm{1}}{\mathrm{tan}\:\theta} \\ $$$${hence}\:\:\mathrm{tan}\:\frac{\theta}{\mathrm{2}}−\frac{\mathrm{2}}{\mathrm{sin}\:\theta}\:=\:−\frac{\mathrm{1}}{\mathrm{tan}\:\theta}−\frac{\mathrm{1}}{\mathrm{sin}\:\theta}\:^{.} \\ $$
Commented by mr W last updated on 18/Jan/19
thanks sir for the explanation!
$${thanks}\:{sir}\:{for}\:{the}\:{explanation}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *