Question Number 53205 by mondodotto@gmail.com last updated on 19/Jan/19
Commented by MJS last updated on 22/Jan/19
$$\mathrm{2}\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution} \\ $$$${t}_{\mathrm{1}} \left({x}\right)=\frac{\mathrm{25}^{{x}} }{\mathrm{5}^{{x}} }=\left(\frac{\mathrm{25}}{\mathrm{5}}\right)^{{x}} =\mathrm{5}^{{x}} ;\:{t}_{\mathrm{1}} \left(\mathrm{2}\right)=\mathrm{25} \\ $$$${t}_{\mathrm{2}} \left({x}\right)=\mathrm{5}^{{x}^{\mathrm{2}} −\mathrm{2}} =\frac{\mathrm{5}^{\left({x}^{\mathrm{2}} \right)} }{\mathrm{25}};\:{t}_{\mathrm{2}} \left(\mathrm{2}\right)=\mathrm{25} \\ $$$${t}_{\mathrm{3}} \left({x}\right)=\sqrt{\mathrm{50}^{{x}} }=\left(\sqrt{\mathrm{50}}\right)^{{x}} =\left(\mathrm{5}\sqrt{\mathrm{2}}\right)^{{x}} =\mathrm{5}^{{x}} \mathrm{2}^{\frac{{x}}{\mathrm{2}}} ;\:{t}_{\mathrm{3}} \left({x}\right)=\mathrm{50} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jan/19
$$\frac{\mathrm{25}^{{x}} }{\mathrm{5}^{{x}} }+\mathrm{5}^{{x}^{\mathrm{2}} −\mathrm{2}} =\sqrt{\mathrm{50}^{{x}} } \\ $$$$\frac{\mathrm{5}^{\mathrm{2}{x}} }{\mathrm{5}^{{x}} }+\mathrm{5}^{{x}^{\mathrm{2}} −\mathrm{2}} =\left(\mathrm{2}×\mathrm{5}^{\mathrm{2}} \right)^{\frac{{x}}{\mathrm{2}}} \\ $$$$\mathrm{5}^{{x}} +\frac{\mathrm{5}^{{x}^{\mathrm{2}} } }{\mathrm{5}^{\mathrm{2}} }=\mathrm{2}^{\frac{{x}}{\mathrm{2}}} ×\mathrm{5}^{{x}} \\ $$$$\mathrm{5}^{{x}} +\mathrm{5}^{{x}^{\mathrm{2}} −\mathrm{2}} −\mathrm{2}^{\frac{{x}}{\mathrm{2}}} ×\mathrm{5}^{{x}} =\mathrm{0} \\ $$$$\mathrm{5}^{{x}} \left(\mathrm{1}+\mathrm{5}^{{x}^{\mathrm{2}} −\mathrm{2}} −\mathrm{2}^{\frac{{x}}{\mathrm{2}}} \right)=\mathrm{0} \\ $$$${if} \\ $$$$\mathrm{5}^{{x}} =\mathrm{0}\:=\mathrm{5}^{−\infty\:} \:\:{x}=−\infty \\ $$$${when} \\ $$$$\mathrm{1}+\mathrm{5}^{{x}^{\mathrm{2}} −\mathrm{2}} −\mathrm{2}^{\frac{{x}}{\mathrm{2}}} =\mathrm{0} \\ $$$$\mathrm{1}+\mathrm{5}^{{x}^{\mathrm{2}} −\mathrm{2}} =\mathrm{2}^{\frac{{x}}{\mathrm{2}}} \\ $$$${now}\:{taking}\:{the}\:{help}\:{of}\:{graph}… \\ $$$$ \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 19/Jan/19