Menu Close

Question-53593




Question Number 53593 by ajfour last updated on 23/Jan/19
Commented by ajfour last updated on 23/Jan/19
Having removed the largest cube  from a hemisphere, it can rest in  equilibrium on a rough incline  plane of inclination α, in the  manner shown. Find θ.   (source: Statics & Dynamics       by S.L. Loney)  Answer given:  θ=sin^(−1) [((8(3π−(√6)))/(9π−8))sin α].
Havingremovedthelargestcubefromahemisphere,itcanrestinequilibriumonaroughinclineplaneofinclinationα,inthemannershown.Findθ.(source:Statics&DynamicsbyS.L.Loney)Answergiven:θ=sin1[8(3π6)9π8sinα].
Answered by mr W last updated on 23/Jan/19
Commented by mr W last updated on 23/Jan/19
R=radius of sphere  a^2 +a^2 +(2a)^2 =R^2   ⇒a=(R/( (√6)))  M=mass of hemisphere  m=mass of cube  M=((2πR^3 ρ)/3)  m=8a^3 ρ=((4R^3 ρ)/(3(√6)))=((2M)/(π(√6)))  center of mass of hemisphere:  b=((3R)/8)    center of mass of hemisphere with hole:  c=((Mb−ma)/(M−m))=((((M3R)/8)−((2M)/(π(√6)))×(R/( (√6))))/(M−((2M)/(π(√6)))))=((R(9π−8))/(8(3π−(√6))))  (c/(sin α))=(R/(sin (π−θ)))  ⇒sin θ=(R/c) sin α=((8(3π−(√6)))/(9π−8))×sin α  ⇒θ=sin^(−1) [((8(3π−(√6)))/(9π−8))×sin α]
R=radiusofspherea2+a2+(2a)2=R2a=R6M=massofhemispherem=massofcubeM=2πR3ρ3m=8a3ρ=4R3ρ36=2Mπ6centerofmassofhemisphere:b=3R8centerofmassofhemispherewithhole:c=MbmaMm=M3R82Mπ6×R6M2Mπ6=R(9π8)8(3π6)csinα=Rsin(πθ)sinθ=Rcsinα=8(3π6)9π8×sinαθ=sin1[8(3π6)9π8×sinα]
Commented by ajfour last updated on 23/Jan/19
Wonderful question and your solution,  Sir !
Wonderfulquestionandyoursolution,Sir!
Commented by mr W last updated on 23/Jan/19
thank you sir!  in my solution the side length of cube  is 2a, therefore i got a=(R/( (√6))).
thankyousir!inmysolutionthesidelengthofcubeis2a,thereforeigota=R6.
Commented by ajfour last updated on 23/Jan/19
thanks _∣ . ._( ∣) _(-_⌣ ) ^(⌢^⌢ ) ) Sir.
thanks..)Sir.
Answered by ajfour last updated on 23/Jan/19
Commented by mr W last updated on 23/Jan/19
nice diagram!  i didn′t make such a diagram, so i  made a mistake at first.
nicediagram!ididntmakesuchadiagram,soimadeamistakeatfirst.

Leave a Reply

Your email address will not be published. Required fields are marked *