Question Number 53684 by ajfour last updated on 25/Jan/19
Commented by ajfour last updated on 25/Jan/19
$${ceiling}\:{to}\:{floor}\:{height}\:{is}\:\boldsymbol{{h}}. \\ $$
Commented by mr W last updated on 25/Jan/19
$${if}\:{no}\:{friction},\:{then} \\ $$$${N}=\frac{{Mg}}{\mathrm{2}} \\ $$
Commented by mr W last updated on 25/Jan/19
Commented by ajfour last updated on 25/Jan/19
$${thanks}\:{for}\:{the}\:{tolerance},\:{Sir}! \\ $$
Answered by mr W last updated on 25/Jan/19
Commented by mr W last updated on 25/Jan/19
$${assume}\:\mu={friction}\:{on}\:{ground} \\ $$$${a}\:\mathrm{sin}\:\alpha+{b}\:\mathrm{sin}\:\beta={h} \\ $$$$\Rightarrow\mathrm{sin}\:\alpha=\frac{{h}−{b}\:\mathrm{sin}\:\beta}{{a}} \\ $$$$\Rightarrow\mathrm{cos}\:\alpha=\frac{\sqrt{{a}^{\mathrm{2}} −\left({h}−{b}\:\mathrm{sin}\:\beta\right)^{\mathrm{2}} }}{{a}} \\ $$$${f}=\mu{N} \\ $$$${N}\:{b}\:\mathrm{cos}\:\beta={Mg}\:\frac{{b}\:\mathrm{cos}\:\beta}{\mathrm{2}}+{f}\:{b}\:\mathrm{sin}\:\beta \\ $$$$\Rightarrow\left(\mathrm{1}−\mu\:\mathrm{tan}\:\beta\right){N}=\frac{{Mg}}{\mathrm{2}} \\ $$$${N}\:\left({b}\:\mathrm{cos}\:\beta−{a}\:\mathrm{cos}\:\alpha\right)+{mg}\frac{{a}\:\mathrm{cos}\:\alpha}{\mathrm{2}}={Mg}\:\left(\frac{{b}\:\mathrm{cos}\:\beta}{\mathrm{2}}−{a}\:\mathrm{cos}\:\alpha\right)+{fh} \\ $$$$\mathrm{2}{N}\left({b}\:\mathrm{cos}\:\beta−{a}\:\mathrm{cos}\:\alpha−\mu{h}\right)={Mgb}\:\mathrm{cos}\:\beta−\left(\mathrm{2}{M}+{m}\right){ga}\:\mathrm{cos}\:\alpha \\ $$$$\frac{{Mg}}{\mathrm{1}−\mu\:\mathrm{tan}\:\beta}\left({b}\:\mathrm{cos}\:\beta−{a}\:\mathrm{cos}\:\alpha−\mu{h}\right)={Mgb}\:\mathrm{cos}\:\beta−\left(\mathrm{2}{M}+{m}\right){ga}\:\mathrm{cos}\:\alpha \\ $$$$\frac{\mathrm{1}}{\mathrm{1}−\mu\:\mathrm{tan}\:\beta}\left({b}\:\mathrm{cos}\:\beta−{a}\:\mathrm{cos}\:\alpha−\mu{h}\right)={b}\:\mathrm{cos}\:\beta−\left(\mathrm{2}+\frac{{m}}{{M}}\right){a}\:\mathrm{cos}\:\alpha \\ $$$$\frac{{b}\:\mathrm{cos}\:\beta−\mu{h}}{\mathrm{1}−\mu\:\mathrm{tan}\:\beta}={b}\:\mathrm{cos}\:\beta−\left(\mathrm{2}+\frac{{m}}{{M}}−\frac{\mathrm{1}}{\mathrm{1}−\mu\:\mathrm{tan}\:\beta}\right){a}\:\mathrm{cos}\:\alpha \\ $$$$\Rightarrow\frac{\mu\left({h}−{b}\:\mathrm{sin}\:\beta\right)}{\mathrm{1}−\mu\:\mathrm{tan}\:\beta}=\left(\mathrm{2}+\frac{{m}}{{M}}−\frac{\mathrm{1}}{\mathrm{1}−\mu\:\mathrm{tan}\:\beta}\right)\sqrt{{a}^{\mathrm{2}} −\left({h}−{b}\:\mathrm{sin}\:\beta\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\beta=…. \\ $$$$\Rightarrow{N}=\frac{{Mg}}{\mathrm{2}\left(\mathrm{1}−\mu\:\mathrm{tan}\:\beta\right)} \\ $$
Commented by ajfour last updated on 25/Jan/19
$${Very}\:{Nice}\:{Sir};\:{thanks}\:{for}\:{attempting} \\ $$$${this}\:{way}\:{too}. \\ $$