Menu Close

Question-53727




Question Number 53727 by Tawa1 last updated on 25/Jan/19
Answered by Kunal12588 last updated on 25/Jan/19
just trying  T_1 ,T_2 ,T_3 ,T_4 −lower cables  T_1 =T_2 =T_3 =T_4 =k       (identical cables)  (1/2)((√(2^2 +0.5^2 )))=h  tan^(−1) (2/h)=φ  4k cosφ−mg=0  4kcosφ=w  k=((4.9)/(4cosφ))  T_(upper) =4kcosφ      [not solved it bcuz i think its wrong]  please report with answer
$${just}\:{trying} \\ $$$${T}_{\mathrm{1}} ,{T}_{\mathrm{2}} ,{T}_{\mathrm{3}} ,{T}_{\mathrm{4}} −{lower}\:{cables} \\ $$$${T}_{\mathrm{1}} ={T}_{\mathrm{2}} ={T}_{\mathrm{3}} ={T}_{\mathrm{4}} ={k}\:\:\:\:\:\:\:\left({identical}\:{cables}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\mathrm{2}^{\mathrm{2}} +\mathrm{0}.\mathrm{5}^{\mathrm{2}} }\right)={h} \\ $$$${tan}^{−\mathrm{1}} \left(\mathrm{2}/{h}\right)=\phi \\ $$$$\mathrm{4}{k}\:{cos}\phi−{mg}=\mathrm{0} \\ $$$$\mathrm{4}{kcos}\phi={w} \\ $$$${k}=\frac{\mathrm{4}.\mathrm{9}}{\mathrm{4}{cos}\phi} \\ $$$${T}_{{upper}} =\mathrm{4}{kcos}\phi\:\:\:\:\:\:\left[{not}\:{solved}\:{it}\:{bcuz}\:{i}\:{think}\:{its}\:{wrong}\right] \\ $$$${please}\:{report}\:{with}\:{answer} \\ $$
Commented by Tawa1 last updated on 25/Jan/19
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jan/19
dimension of box=l×b×h  diagonal=(√(l^2 +b^2 )) =  tanθ=(h/((√(l^2 +b^2  ))/2))=((2h)/( (√(l^2 +b^2 )) ))  4T_(lowercable) sinθ=mg  T_(lowercable) =((mg)/(4sinθ))  T_(upper) =mg
$${dimension}\:{of}\:{box}={l}×{b}×{h} \\ $$$${diagonal}=\sqrt{{l}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:= \\ $$$${tan}\theta=\frac{{h}}{\frac{\sqrt{{l}^{\mathrm{2}} +{b}^{\mathrm{2}} \:}}{\mathrm{2}}}=\frac{\mathrm{2}{h}}{\:\sqrt{{l}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:} \\ $$$$\mathrm{4}{T}_{{lowercable}} {sin}\theta={mg} \\ $$$${T}_{{lowercable}} =\frac{{mg}}{\mathrm{4}{sin}\theta} \\ $$$${T}_{{upper}} ={mg} \\ $$$$ \\ $$
Commented by Tawa1 last updated on 25/Jan/19
God bless you sir. you can help me complete it if correct sir.
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{you}\:\mathrm{can}\:\mathrm{help}\:\mathrm{me}\:\mathrm{complete}\:\mathrm{it}\:\mathrm{if}\:\mathrm{correct}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *