Question Number 53824 by ajfour last updated on 26/Jan/19
Commented by ajfour last updated on 26/Jan/19
$${Cone}\:{is}\:{solid},\:{wall}\:{is}\:{smooth}.\:{Find} \\ $$$${maximum}\:{length}\:{of}\:{string}\:{possible} \\ $$$${to}\:{hold}\:{the}\:{cone}\:{against}\:{the}\:{wall}. \\ $$
Answered by mr W last updated on 26/Jan/19
Commented by mr W last updated on 26/Jan/19
$${if}\:{the}\:{wall}\:{is}\:{smooth},\:{the}\:{maximum} \\ $$$${string}\:{length}\:{is}\:{when}\:{the}\:{string}\: \\ $$$${passes}\:{the}\:{point}\:{G}. \\ $$$${r}={h}\:\mathrm{tan}\:\alpha \\ $$$${e}=\frac{{h}}{\mathrm{4}}={centroid}\:{of}\:{cone} \\ $$$$\mathrm{tan}\:\theta=\frac{{h}−{e}}{{r}}=\frac{\mathrm{3}}{\mathrm{4}\:\mathrm{tan}\:\alpha} \\ $$$$\Rightarrow{l}_{{max}} =\frac{{h}}{\mathrm{sin}\:\theta}={h}\sqrt{\mathrm{1}+\left(\frac{\mathrm{4}\:\mathrm{tan}\:\alpha}{\mathrm{3}}\right)^{\mathrm{2}} } \\ $$
Commented by ajfour last updated on 26/Jan/19
$${correct}\:{answer}\:{Sir};\:{elegant}\:{method}, \\ $$$${i}\:{am}\:{not}\:{getting}\:{this}\:{right}\:{answer}. \\ $$
Commented by ajfour last updated on 26/Jan/19
$${T}\mathrm{cos}\:\theta={Mg} \\ $$$${Mg}\left(\frac{{h}}{\mathrm{4}}\right)={Th}\mathrm{cos}\:\theta−{Tr}\mathrm{sin}\:\theta \\ $$$$\Rightarrow\:\frac{{h}}{\mathrm{4}}={h}−{r}\mathrm{tan}\:\theta\:=\:{h}−{h}\mathrm{tan}\:\alpha\mathrm{tan}\:\theta \\ $$$$\Rightarrow\:\:\mathrm{tan}\:\theta\:=\:\frac{\mathrm{3}}{\mathrm{4tan}\:\alpha} \\ $$$$\:\:{l}={h}/\mathrm{sin}\:\theta\:=\:{h}\sqrt{\mathrm{1}+\frac{\mathrm{16}}{\mathrm{9}}\mathrm{tan}\:^{\mathrm{2}} \alpha}\:\:\:. \\ $$
Commented by mr W last updated on 26/Jan/19
$${exactly}! \\ $$
Answered by mr W last updated on 26/Jan/19
Commented by mr W last updated on 26/Jan/19
$${the}\:{same}\:{question}\:{but}\:{with}\:{friction} \\ $$$${on}\:{the}\:{wall}:\:\mu \\ $$$${f}=\mu{N} \\ $$$$\mathrm{tan}\:\varphi=\frac{{f}}{{N}}=\mu \\ $$$${in}\:{this}\:{case}\:{the}\:{maximum}\:{string} \\ $$$${length}\:{is}\:{when}\:{string}\:{passes}\:{point}\:{F}. \\ $$$${r}={h}\:\mathrm{tan}\:\alpha \\ $$$${e}=\frac{{h}}{\mathrm{4}} \\ $$$$\mathrm{tan}\:\theta=\frac{{h}−{e}}{{r}+{e}\:\mathrm{tan}\:\varphi}=\frac{\mathrm{3}{h}}{\mathrm{4}\left({h}\:\mathrm{tan}\:\alpha+\frac{{h}\mu}{\mathrm{4}}\right)}=\frac{\mathrm{3}}{\mathrm{4}\:\mathrm{tan}\:\alpha+\mu} \\ $$$$\mathrm{sin}\:\theta=\frac{\mathrm{3}}{\:\sqrt{\mathrm{3}^{\mathrm{2}} +\left(\mathrm{4}\:\mathrm{tan}\:\alpha+\mu\right)^{\mathrm{2}} }}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\left(\frac{\mu+\mathrm{4}\:\mathrm{tan}\:\alpha}{\mathrm{3}}\right)^{\mathrm{2}} }} \\ $$$$\Rightarrow{l}_{{max}} =\frac{{h}}{\mathrm{sin}\:\theta}={h}\sqrt{\mathrm{1}+\left(\frac{\mu+\mathrm{4}\:\mathrm{tan}\:\alpha}{\mathrm{3}}\right)^{\mathrm{2}} } \\ $$
Commented by ajfour last updated on 26/Jan/19
$${need}\:{some}\:{time}\:{comprehending} \\ $$$${them},\:{Sir}. \\ $$
Commented by mr W last updated on 26/Jan/19
$${the}\:{principle}\:{is}:\:{when}\:{a}\:{body}\:{is}\:{in} \\ $$$${equilibrium}\:{under}\:{three}\:{forces},\:{then} \\ $$$${these}\:{three}\:{forces}\:{must}\:{intersect}\:{at} \\ $$$${one}\:{point}. \\ $$$${such}\:{that}\:{the}\:{string}\:{is}\:{as}\:{long}\:{as} \\ $$$${possible},\:{the}\:{normal}\:{force}\:{from}\:{the} \\ $$$${wall}\:{should}\:{be}\:{as}\:{high}\:{as}\:{possible}, \\ $$$${the}\:{upmost}\:{position}\:{of}\:{the}\:{normal} \\ $$$${force}\:{is}\:{the}\:{upmost}\:{point}\:{of}\:{the} \\ $$$${base}\:{of}\:{the}\:{cone}. \\ $$
Commented by ajfour last updated on 26/Jan/19
$${Thanks}\:{Sir},\:{very}\:{useful}\:{concept}; \\ $$$${understand}\:{your}\:{solution}\:{better}\:{now}. \\ $$
Commented by Otchere Abdullai last updated on 26/Jan/19
$${thus}\:{why}\:{i}\:{said}\:{this}\:{man}\:{W}\:{is}\:{a}\: \\ $$$${professor}! \\ $$
Commented by ajfour last updated on 27/Jan/19
$${more}\:{than}\:{that},\:{an}\:{Ideal}\:{one}! \\ $$