Menu Close

Question-53910




Question Number 53910 by ajfour last updated on 27/Jan/19
Commented by ajfour last updated on 27/Jan/19
Find maximum area of quadrilateral  ABCD.
FindmaximumareaofquadrilateralABCD.
Commented by ajfour last updated on 27/Jan/19
Commented by ajfour last updated on 27/Jan/19
At least find θ and φ in terms of  R and r such that area ABCDA is  maximum.
AtleastfindθandϕintermsofRandrsuchthatareaABCDAismaximum.
Commented by ajfour last updated on 27/Jan/19
shall your result meet with what  i calculated, please confirm it, Sir..    tan θ = ((R+r(1+cos φ))/(rsin φ))    tan φ = ((r+R(1+cos θ))/(Rsin θ)) .
shallyourresultmeetwithwhaticalculated,pleaseconfirmit,Sir..tanθ=R+r(1+cosϕ)rsinϕtanϕ=r+R(1+cosθ)Rsinθ.
Commented by mr W last updated on 27/Jan/19
without calculation i guess the result  is when tangent at D is parallel to  diagonal AC and tangent at C is  parallel to diagonal BD.   i.e. CA⊥AD, BD⊥BC.
withoutcalculationiguesstheresultiswhentangentatDisparalleltodiagonalACandtangentatCisparalleltodiagonalBD.i.e.CAAD,BDBC.
Commented by ajfour last updated on 27/Jan/19
Brilliant professor Sir, but my  final cubic solution had error,  i am trying to see if Cardano′s fit,  please help there.
BrilliantprofessorSir,butmyfinalcubicsolutionhaderror,iamtryingtoseeifCardanosfit,pleasehelpthere.
Commented by mr W last updated on 27/Jan/19
yes, i can confirm that your solution  matches that what i guess.
yes,icanconfirmthatyoursolutionmatchesthatwhatiguess.
Commented by mr W last updated on 27/Jan/19
Commented by mr W last updated on 27/Jan/19
∠BAC=(π/2)−θ  [R+r(1+cos φ)]tan ((π/2)−θ)=r sin φ  ⇒tan θ=((R+r(1+cos φ))/(r sin φ))  similarly:  [r+R(1+cos θ)]tan ((π/2)−φ)=R sin θ  ⇒tan φ=((r+R(1+cos θ))/(R sin θ))
BAC=π2θ[R+r(1+cosϕ)]tan(π2θ)=rsinϕtanθ=R+r(1+cosϕ)rsinϕsimilarly:[r+R(1+cosθ)]tan(π2ϕ)=Rsinθtanϕ=r+R(1+cosθ)Rsinθ
Commented by mr W last updated on 27/Jan/19
this is how i guess the result:  if C is fixed on the second circle, i.e.  ΔACB is fixed, max. ΔACD is when  tangent at D is parallel to AC, for this  is the max. altitude over AC.  similarly if D is fixed on the first  circle, max. ΔBDC is when tangent  at C is parallel to BD.
thisishowiguesstheresult:ifCisfixedonthesecondcircle,i.e.ΔACBisfixed,max.ΔACDiswhentangentatDisparalleltoAC,forthisisthemax.altitudeoverAC.similarlyifDisfixedonthefirstcircle,max.ΔBDCiswhentangentatCisparalleltoBD.
Commented by mr W last updated on 27/Jan/19
i think we got the correct exact solution  now.
ithinkwegotthecorrectexactsolutionnow.
Commented by ajfour last updated on 28/Jan/19
I too believed Cardano′s method  shall fetch all roots, whether real  or complex; MjS sir′s comment  once had let me doubt this belief  for some time; or may be i  misinterpreted it..thanks!
ItoobelievedCardanosmethodshallfetchallroots,whetherrealorcomplex;MjSsirscommentoncehadletmedoubtthisbeliefforsometime;ormaybeimisinterpretedit..thanks!
Answered by ajfour last updated on 27/Jan/19
Commented by ajfour last updated on 27/Jan/19
C(R+r+rcos φ, rsin φ)  A=Area(△ABC)+Area(△ACD)  A=(((R+r)/2))rsin φ+((Rh)/2)  Eq. of AD:   y=−xtan θ   h=[rsin φ+(R+r+rcos φ)tan θ]cos θ    =rsin φcos θ+(R+r+rcos φ)sin θ    = (R+r)sin θ+rsin (θ+φ)  2A=(R+r)rsin φ+R(R+r)sin θ                      +Rrsin (θ+φ)  let  μ=(R/r)   ⇒ 2A/r^2 =(μ+1)sin φ+μ(1+μ)sin θ                                 +μsin (θ+φ)  ((2A)/((μ+1)r^2 ))=sin φ+μsin θ+λsin (θ+φ)                         where λ=(μ/(μ+1)) =(R/(R+r))  ((2/((μ+1)r^2 )))((∂(A))/∂θ)=μcos θ+λcos (θ+φ)=0  ⇒  μcos θ = −λcos (θ+φ)    ...(i)  ((2/((μ+1)r^2 )))((∂(A))/∂φ)= cos φ+λcos (θ+φ)=0  ⇒  cos φ = −λcos (θ+φ)     ...(ii)  ⇒    cos φ = μcos θ      Now using (i) with μ/λ = b=μ+1     bcos θ+cos θcos φ−sin θsin φ=0  cos^2 θ(b+μcos θ)^2 =(1−cos^2 θ)(1−μ^2 cos^2 θ)  let  cos θ= z  ⇒ b^2 z^2 +2μbz^3 =1−μ^2 z^2 −z^2   but b=μ+1 , ⇒       2(μ^2 +μ+1)z^2 +2μ(μ+1)z^3 −1=0  ⇒  (1/z^3 )−2(μ^2 +μ+1)(1/z)−2μ(μ+1)=0  (1/z)=(1/(cos θ))=sec θ = t  ⇒ t^3 +pt+q =0  with  p=−2(μ^2 +μ+1) ; q=−2μ(μ+1)  (q^2 /4)+(p^3 /(27)) = μ^2 (μ+1)^2 −((8(μ^2 +μ+1)^3 )/(27))   D < 0 perhaps (as μ>1)  ....
C(R+r+rcosϕ,rsinϕ)A=Area(ABC)+Area(ACD)A=(R+r2)rsinϕ+Rh2Eq.ofAD:y=xtanθh=[rsinϕ+(R+r+rcosϕ)tanθ]cosθ=rsinϕcosθ+(R+r+rcosϕ)sinθ=(R+r)sinθ+rsin(θ+ϕ)2A=(R+r)rsinϕ+R(R+r)sinθ+Rrsin(θ+ϕ)letμ=Rr2A/r2=(μ+1)sinϕ+μ(1+μ)sinθ+μsin(θ+ϕ)2A(μ+1)r2=sinϕ+μsinθ+λsin(θ+ϕ)whereλ=μμ+1=RR+r(2(μ+1)r2)(A)θ=μcosθ+λcos(θ+ϕ)=0μcosθ=λcos(θ+ϕ)(i)(2(μ+1)r2)(A)ϕ=cosϕ+λcos(θ+ϕ)=0cosϕ=λcos(θ+ϕ)(ii)cosϕ=μcosθNowusing(i)withμ/λ=b=μ+1bcosθ+cosθcosϕsinθsinϕ=0cos2θ(b+μcosθ)2=(1cos2θ)(1μ2cos2θ)letcosθ=zb2z2+2μbz3=1μ2z2z2butb=μ+1,2(μ2+μ+1)z2+2μ(μ+1)z31=01z32(μ2+μ+1)1z2μ(μ+1)=01z=1cosθ=secθ=tt3+pt+q=0withp=2(μ2+μ+1);q=2μ(μ+1)q24+p327=μ2(μ+1)28(μ2+μ+1)327D<0perhaps(asμ>1).
Commented by ajfour last updated on 27/Jan/19
Thanks a lot Sir!
ThanksalotSir!
Commented by mr W last updated on 27/Jan/19
Commented by mr W last updated on 28/Jan/19
 t^3 −pt−q =0  with  p=2(μ^2 +μ+1) ; q=2μ(μ+1)  (u+v)^3 −3uv(u+v)−(u^3 +v^3 )=0  let t=u+v  u^3 v^3 =((p/3))^3 =(8/(27))(μ^2 +μ+1)^3   u^3 +v^3 =q=2μ(μ+1)  u^3  and v^3  are roots of   x^2 −2μ(μ+1)x+(8/(27))(μ^2 +μ+1)^3 =0  D=4[μ^2 (μ+1)^2 −(8/(27))(μ^2 +μ+1)^3 ]<0  u^3 (v^3 )=μ(μ+1)±i(√((8/(27))(μ^2 +μ+1)^3 −μ^2 (μ+1)^2 ))=A±iB  with A=μ(μ+1), B=(√((8/(27))(μ^2 +μ+1)^3 −μ^2 (μ+1)^2 ))  A+iB=(√(A^2 +B^2 ))((A/( (√(A^2 +B^2 ))))+i(B/( (√(A^2 +B^2 )))))=(√(A^2 +B^2 ))(cos α+i sin α)  with α=tan^(−1) (B/A)=tan^(−1) (√(((8(μ^2 +μ+1)^3 )/(27μ^2 (μ+1)^2 ))−1))  A^2 +B^2 =(8/(27))(μ^2 +μ+1)^3   u^3 (v^3 )=(√(A^2 +B^2 ))(cos α±i sin α)  ⇒u=((A^2 +B^2 ))^(1/6) [cos (((α+2nπ)/3))+i sin (((α+2nπ)/3))]  ⇒v=((A^2 +B^2 ))^(1/6) [cos (((α+2nπ)/3))−i sin (((α+2nπ)/3))]  ⇒t=u+v=2((A^2 +B^2 ))^(1/6)  cos (((α+2nπ)/3)), n=0,1,2  ⇒t=sec θ=2(√((2(μ^2 +μ+1))/3)) cos ((1/3)tan^(−1) (√(((8(μ^2 +μ+1)^3 )/(27μ^2 (μ+1)^2 ))−1)))
t3ptq=0withp=2(μ2+μ+1);q=2μ(μ+1)(u+v)33uv(u+v)(u3+v3)=0lett=u+vu3v3=(p3)3=827(μ2+μ+1)3u3+v3=q=2μ(μ+1)u3andv3arerootsofx22μ(μ+1)x+827(μ2+μ+1)3=0D=4[μ2(μ+1)2827(μ2+μ+1)3]<0u3(v3)=μ(μ+1)±i827(μ2+μ+1)3μ2(μ+1)2=A±iBwithA=μ(μ+1),B=827(μ2+μ+1)3μ2(μ+1)2A+iB=A2+B2(AA2+B2+iBA2+B2)=A2+B2(cosα+isinα)withα=tan1BA=tan18(μ2+μ+1)327μ2(μ+1)21A2+B2=827(μ2+μ+1)3u3(v3)=A2+B2(cosα±isinα)u=A2+B26[cos(α+2nπ3)+isin(α+2nπ3)]v=A2+B26[cos(α+2nπ3)isin(α+2nπ3)]t=u+v=2A2+B26cos(α+2nπ3),n=0,1,2t=secθ=22(μ2+μ+1)3cos(13tan18(μ2+μ+1)327μ2(μ+1)21)
Commented by ajfour last updated on 27/Jan/19
EXCELLENT   Sir, but  wont any of  the other two solutions might fit?
EXCELLENTSir,butwontanyoftheothertwosolutionsmightfit?
Commented by mr W last updated on 27/Jan/19
no, because we expect that 0<θ<(π/2).
no,becauseweexpectthat0<θ<π2.
Commented by mr W last updated on 27/Jan/19
example:  μ=(R/r)=1, θ=φ=68.53°  check:  from tan θ=((R+r(1+cos φ))/(r sin φ))  ⇒tan θ=((2+cos θ)/(sin θ))  2cos^2  θ+2cos θ−1=0  cos θ=(((√3)−1)/2)  ⇒θ=cos^(−1) (((√3)−1)/2)=68.53°
example:μ=Rr=1,θ=ϕ=68.53°check:fromtanθ=R+r(1+cosϕ)rsinϕtanθ=2+cosθsinθ2cos2θ+2cosθ1=0cosθ=312θ=cos1312=68.53°

Leave a Reply

Your email address will not be published. Required fields are marked *