Question Number 54022 by ajfour last updated on 28/Jan/19
Commented by ajfour last updated on 28/Jan/19
$${Given}\:{a}\:{and}\:{b},\:{find}\:\theta\:{and}\:{R}\:{in}\:{terms} \\ $$$${of}\:{a}\:{and}\:{b}.\:\:\:\: \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 28/Jan/19
Commented by ajfour last updated on 28/Jan/19
Commented by ajfour last updated on 28/Jan/19
$${AE}={AD}+{DE} \\ $$$$\frac{{b}}{\mathrm{sin}\:\theta}=\:{a}\mathrm{cot}\:\frac{\theta}{\mathrm{2}}+\sqrt{\left({a}+{b}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$$\frac{{b}}{\mathrm{2sin}\:\frac{\theta}{\mathrm{2}}\mathrm{cos}\:\frac{\theta}{\mathrm{2}}}−\frac{{a}\mathrm{cos}\:\frac{\theta}{\mathrm{2}}}{\mathrm{sin}\:\frac{\theta}{\mathrm{2}}}=\sqrt{{b}\left({b}+\mathrm{2}{a}\right)} \\ $$$$\frac{{b}−{a}\left(\mathrm{1}+\mathrm{cos}\:\theta\right)}{\mathrm{sin}\:\theta}=\:\sqrt{{b}\left({b}+\mathrm{2}{a}\right)} \\ $$$$\Rightarrow\:{b}^{\mathrm{2}} +{a}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{cos}\:\theta\right)^{\mathrm{2}} −\mathrm{2}{ab}\left(\mathrm{1}+\mathrm{cos}\:\theta\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={b}\left({b}+\mathrm{2}{a}\right)\mathrm{sin}\:^{\mathrm{2}} \theta \\ $$$${b}^{\mathrm{2}} +{a}^{\mathrm{2}} +\mathrm{2}{a}^{\mathrm{2}} \mathrm{cos}\:\theta+{a}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta−\mathrm{2}{ab} \\ $$$$\:\:−\mathrm{2}{ab}\mathrm{cos}\:\theta={b}^{\mathrm{2}} +\mathrm{2}{ab}−{b}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \theta−\mathrm{2}{ab}\mathrm{cos}\:^{\mathrm{2}} \theta \\ $$$${let}\:\mathrm{cos}\:\theta\:=\:{s} \\ $$$$\Rightarrow\:\left({a}+{b}\right)^{\mathrm{2}} \boldsymbol{{s}}^{\mathrm{2}} +\mathrm{2}{a}\left({a}−{b}\right)\boldsymbol{{s}}−{a}\left(\mathrm{4}{b}−{a}\right)=\mathrm{0} \\ $$$$\boldsymbol{{s}}=\frac{{a}\left({a}−{b}\right)+\sqrt{{a}^{\mathrm{2}} \left({a}−{b}\right)^{\mathrm{2}} +{a}\left({a}+{b}\right)^{\mathrm{2}} \left(\mathrm{4}{b}−{a}\right)}}{\left({a}+{b}\right)^{\mathrm{2}} } \\ $$$${a}\:{and}\:{R}\:{both}\:{are}\:{roots}\:{of} \\ $$$$\:\left({x}+{b}\right)^{\mathrm{2}} \boldsymbol{{s}}^{\mathrm{2}} +\mathrm{2}{x}\left({x}−{b}\right)\boldsymbol{{s}}−{x}\left(\mathrm{4}{b}−{x}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\boldsymbol{{x}}^{\mathrm{2}} \left(\mathrm{1}+\boldsymbol{{s}}\right)^{\mathrm{2}} +\mathrm{2}{b}\boldsymbol{{x}}\left(\boldsymbol{{s}}^{\mathrm{2}} −\boldsymbol{{s}}−\mathrm{2}\right)+{b}^{\mathrm{2}} \boldsymbol{{s}}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\:\boldsymbol{{aR}}\:=\:\:\frac{{b}^{\mathrm{2}} \boldsymbol{{s}}^{\mathrm{2}} }{\left(\mathrm{1}+\boldsymbol{{s}}\right)^{\mathrm{2}} } \\ $$$${hence}\:\:\:\boldsymbol{{R}}\:=\:\frac{{b}^{\mathrm{2}} \boldsymbol{{s}}^{\mathrm{2}} }{{a}\left(\mathrm{1}+\boldsymbol{{s}}\right)^{\mathrm{2}} }\:. \\ $$