Question Number 54229 by ajfour last updated on 31/Jan/19
Commented by ajfour last updated on 31/Jan/19
$${Find}\:{maximum}\:{inradius}\:{of}\:{circle} \\ $$$${in}\:{terms}\:{of}\:{ellipse}\:{parameters}\:{a},{b}. \\ $$
Answered by mr W last updated on 01/Feb/19
$${P}\left({a}\:\mathrm{cos}\:\theta,\:{b}\:\mathrm{sin}\:\theta\right) \\ $$$${AB}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${eqn}.\:{of}\:{AB}: \\ $$$${bx}+{ay}+{ab}=\mathrm{0} \\ $$$${d}_{\bot} \:{from}\:{P}\:{to}\:{AB}=\frac{{ab}\left(\mathrm{cos}\:\theta+\mathrm{sin}\:\theta+\mathrm{1}\right)}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$${AP}=\sqrt{{a}^{\mathrm{2}} \left(\mathrm{cos}\:\theta+\mathrm{1}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta} \\ $$$${BP}=\sqrt{{a}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \left(\mathrm{sin}\:\theta+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${A}_{\Delta} =\frac{{r}}{\mathrm{2}}\left(\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+\sqrt{{a}^{\mathrm{2}} \left(\mathrm{cos}\:\theta+\mathrm{1}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}+\sqrt{{a}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \left(\mathrm{sin}\:\theta+\mathrm{1}\right)^{\mathrm{2}} }\right)=\frac{\mathrm{1}}{\mathrm{2}}×\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }×\frac{{ab}\left(\mathrm{cos}\:\theta+\mathrm{sin}\:\theta+\mathrm{1}\right)}{\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }} \\ $$$${r}\left(\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+\sqrt{{a}^{\mathrm{2}} \left(\mathrm{cos}\:\theta+\mathrm{1}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}+\sqrt{{a}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \left(\mathrm{sin}\:\theta+\mathrm{1}\right)^{\mathrm{2}} }\right)={ab}\left(\mathrm{cos}\:\theta+\mathrm{sin}\:\theta+\mathrm{1}\right) \\ $$$$\Rightarrow{r}=\frac{{ab}\left(\mathrm{cos}\:\theta+\mathrm{sin}\:\theta+\mathrm{1}\right)}{\left.\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+\sqrt{{a}^{\mathrm{2}} \left(\mathrm{cos}\:\theta+\mathrm{1}\right)^{\mathrm{2}} +{b}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}+\sqrt{{a}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \left(\mathrm{sin}\:\theta+\mathrm{1}\right)^{\mathrm{2}} }\right)} \\ $$$${with}\:\lambda=\frac{{b}}{{a}} \\ $$$$\Rightarrow\frac{{r}}{{b}}=\frac{\mathrm{cos}\:\theta+\mathrm{sin}\:\theta+\mathrm{1}}{\left.\:\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }+\sqrt{\left(\mathrm{cos}\:\theta+\mathrm{1}\right)^{\mathrm{2}} +\lambda^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}+\sqrt{\mathrm{cos}^{\mathrm{2}} \:\theta+\lambda^{\mathrm{2}} \left(\mathrm{sin}\:\theta+\mathrm{1}\right)^{\mathrm{2}} }\right)} \\ $$$$\Rightarrow{S}=\frac{{b}}{{r}}=\frac{\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }+\sqrt{\left(\mathrm{cos}\:\theta+\mathrm{1}\right)^{\mathrm{2}} +\lambda^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}+\sqrt{\mathrm{cos}^{\mathrm{2}} \:\theta+\lambda^{\mathrm{2}} \left(\mathrm{sin}\:\theta+\mathrm{1}\right)^{\mathrm{2}} }}{\mathrm{cos}\:\theta+\mathrm{sin}\:\theta+\mathrm{1}} \\ $$$$\frac{{dS}}{{d}\theta}=\mathrm{0} \\ $$$$−\frac{\left[\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }+\sqrt{\left(\mathrm{cos}\:\theta+\mathrm{1}\right)^{\mathrm{2}} +\lambda^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}+\sqrt{\mathrm{cos}^{\mathrm{2}} \:\theta+\lambda^{\mathrm{2}} \left(\mathrm{sin}\:\theta+\mathrm{1}\right)^{\mathrm{2}} }\right]\left(\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right)}{\left(\mathrm{cos}\:\theta+\mathrm{sin}\:\theta+\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{cos}\:\theta+\mathrm{sin}\:\theta+\mathrm{1}}\left[\frac{−\left(\mathrm{cos}\:\theta+\mathrm{1}\right)\mathrm{sin}\:\theta+\lambda^{\mathrm{2}} \mathrm{sin}\:\theta\:\mathrm{cos}\:\theta}{\:\sqrt{\left(\mathrm{cos}\:\theta+\mathrm{1}\right)^{\mathrm{2}} +\lambda^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}}+\frac{−\mathrm{cos}\:\theta\:\mathrm{sin}\:\theta+\lambda^{\mathrm{2}} \left(\mathrm{sin}\:\theta+\mathrm{1}\right)\mathrm{cos}\:\theta}{\:\sqrt{\mathrm{cos}^{\mathrm{2}} \:\theta+\lambda^{\mathrm{2}} \left(\mathrm{sin}\:\theta+\mathrm{1}\right)^{\mathrm{2}} }}\right]=\mathrm{0} \\ $$$$\Rightarrow\frac{\left[\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }+\sqrt{\left(\mathrm{cos}\:\theta+\mathrm{1}\right)^{\mathrm{2}} +\lambda^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}+\sqrt{\mathrm{cos}^{\mathrm{2}} \:\theta+\lambda^{\mathrm{2}} \left(\mathrm{sin}\:\theta+\mathrm{1}\right)^{\mathrm{2}} }\right]\left(\mathrm{cos}\:\theta−\mathrm{sin}\:\theta\right)}{\mathrm{cos}\:\theta+\mathrm{sin}\:\theta+\mathrm{1}}=\left[\frac{\left(\lambda^{\mathrm{2}} −\mathrm{1}\right)\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta−\mathrm{sin}\:\theta}{\:\sqrt{\left(\mathrm{cos}\:\theta+\mathrm{1}\right)^{\mathrm{2}} +\lambda^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}}+\frac{\left(\lambda^{\mathrm{2}} −\mathrm{1}\right)\mathrm{cos}\:\theta\:\mathrm{sin}\:\theta+\lambda^{\mathrm{2}} \mathrm{cos}\:\theta}{\:\sqrt{\mathrm{cos}^{\mathrm{2}} \:\theta+\lambda^{\mathrm{2}} \left(\mathrm{sin}\:\theta+\mathrm{1}\right)^{\mathrm{2}} }}\right] \\ $$$$\Rightarrow\theta=…. \\ $$$${examples}: \\ $$$$\lambda=\frac{{b}}{{a}}=\mathrm{1}\Rightarrow\theta=\mathrm{45}° \\ $$$$\lambda=\frac{{b}}{{a}}=\mathrm{0}.\mathrm{5}\Rightarrow\theta=\mathrm{71}.\mathrm{35}° \\ $$$$\lambda=\frac{{b}}{{a}}=\mathrm{2}\Rightarrow\theta=\mathrm{18}.\mathrm{65}° \\ $$
Commented by ajfour last updated on 01/Feb/19
$${yes}\:{Sir},\:{no}\:{shorter}\:{alternative}! \\ $$$${only}\:{i}\:{took}\:\mathrm{tan}\:\frac{\theta}{\mathrm{2}}={m}\:,\:{i}\:{got} \\ $$$${S}=\frac{\mathrm{2}{b}}{{r}}=\frac{\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} {m}^{\mathrm{2}} }}{\mathrm{1}+{m}}+\frac{\left(\mathrm{1}−{m}\right)\sqrt{\lambda^{\mathrm{2}} +{m}^{\mathrm{2}} }}{{m}}+\frac{\left(\mathrm{1}+{m}^{\mathrm{2}} \right)\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }}{\mathrm{1}+{m}} \\ $$$${m}\left(\lambda\right)\:{is}\:{quite}\:{implicit}\:{upon}\:\frac{{dS}}{{dm}}=\mathrm{0}\:. \\ $$$${Thank}\:{you}\:{Sir}. \\ $$