Menu Close

Question-54239




Question Number 54239 by 951172235v last updated on 01/Feb/19
Answered by Prithwish sen last updated on 01/Feb/19
= tan^(−1) ((((1/(p+q+s)) +(1/(p+q+t)))/(1− (1/((p+q+s)(p+q+t)))))) +  tan^(−1) ((((1/(p+r+u)) +(1/(p+r+v)))/(1−(1/((p+r+u)(p+r+v))))) )  = tan^(−1) (((2p+2q+s+t)/((p+q)^2  + (p+q)(s+t)+st −1)) ) +  tan^(−1) (((2p+2r+u+v)/((p+r)^2 +(p+r)(u+v)+uv −1)))  = tan^(−1) (((2p+2q+s+t)/(2(p+q)^2 +(p+q)(s+t)))) +  tan^(−1) (((2p+2r+u+v)/(2(p+r)^2 +(p+r)(u+v))))  = tan^(−1) ((1/((p+q)))) + tan^(−1) ((1/((p+r))))  = tan^(−1) (((2p+q+r)/(p^2 +pr+pq+qr−1)))  = tan^(−1) (((2p+q+r)/(2p^2 +pq+pr)))  =tan^(−1) ((1/p))  Hence proved.
=tan1(1p+q+s+1p+q+t11(p+q+s)(p+q+t))+tan1(1p+r+u+1p+r+v11(p+r+u)(p+r+v))=tan1(2p+2q+s+t(p+q)2+(p+q)(s+t)+st1)+tan1(2p+2r+u+v(p+r)2+(p+r)(u+v)+uv1)=tan1(2p+2q+s+t2(p+q)2+(p+q)(s+t))+tan1(2p+2r+u+v2(p+r)2+(p+r)(u+v))=tan1(1(p+q))+tan1(1(p+r))=tan1(2p+q+rp2+pr+pq+qr1)=tan1(2p+q+r2p2+pq+pr)=tan1(1p)Henceproved.

Leave a Reply

Your email address will not be published. Required fields are marked *