Menu Close

Question-54357




Question Number 54357 by ajfour last updated on 02/Feb/19
Commented by ajfour last updated on 02/Feb/19
Find 𝛂 such that the ray of light  being reflected the way shown,  reaches C from S.  For example lets take h=((5R)/2)  and b=((3R)/2).
Findαsuchthattherayoflightbeingreflectedthewayshown,reachesCfromS.Forexampleletstakeh=5R2andb=3R2.
Answered by mr W last updated on 02/Feb/19
Commented by mr W last updated on 03/Feb/19
let δ=(b/R), λ=(h/R)  α−β=(π/2)−θ  ⇒β=α+θ−(π/2)  (2b−R sin θ)(1/(tan α))+R(1−cos θ)=h  ⇒tan α=((2b−R sin θ)/(h−R(1−cos θ)))=((2δ−sin θ)/(λ−1+cos θ))  (b−R tan (θ/2))(1/(sin β))=(R tan (θ/2))(1/(sin (θ+β)))  (b−R tan (θ/2))(1/(sin (θ+α−(π/2))))=(R tan (θ/2))(1/(sin (2θ+α−(π/2))))  ((δ/(tan (θ/2)))−1)((cos (2θ+α))/(cos (θ+α)))=1  ((δ/(tan (θ/2)))−1)((cos 2θ−sin 2θ tan α)/(cos θ−sin θ tan α))=1  ((δ/(tan (θ/2)))−1)((cos 2θ−sin 2θ((2δ−sin θ)/(λ−1+cos θ)))/(cos θ−sin θ((2b−R sin θ)/(h−R(1−cos θ)))))=1  ⇒((δ/(tan (θ/2)))−1)(((cos 2θ)(λ−1+cos θ)−(sin 2θ)(2δ−sin θ))/((cos θ)(λ−1+cos θ)−(sin θ)(2δ−sin θ)))=1  ⇒θ=....  example:  δ=(b/R)=(3/2), λ=(h/R)=(5/2)  ⇒θ=80.5644°⇒α=50.4304°
letδ=bR,λ=hRαβ=π2θβ=α+θπ2(2bRsinθ)1tanα+R(1cosθ)=htanα=2bRsinθhR(1cosθ)=2δsinθλ1+cosθ(bRtanθ2)1sinβ=(Rtanθ2)1sin(θ+β)(bRtanθ2)1sin(θ+απ2)=(Rtanθ2)1sin(2θ+απ2)(δtanθ21)cos(2θ+α)cos(θ+α)=1(δtanθ21)cos2θsin2θtanαcosθsinθtanα=1(δtanθ21)cos2θsin2θ2δsinθλ1+cosθcosθsinθ2bRsinθhR(1cosθ)=1(δtanθ21)(cos2θ)(λ1+cosθ)(sin2θ)(2δsinθ)(cosθ)(λ1+cosθ)(sinθ)(2δsinθ)=1θ=.example:δ=bR=32,λ=hR=52θ=80.5644°α=50.4304°
Commented by ajfour last updated on 03/Feb/19
far too good Sir, thanks.  what if i assume tangent to circle  at point of reflection (with θ assumed)  and take reflection of C in tangent;  and then join S ′ to C ′. i think it′ll  be unnecessary and equivalent to  how you have solved.  Dont you think so?
fartoogoodSir,thanks.whatifiassumetangenttocircleatpointofreflection(withθassumed)andtakereflectionofCintangent;andthenjoinStoC.ithinkitllbeunnecessaryandequivalenttohowyouhavesolved.Dontyouthinkso?
Commented by mr W last updated on 03/Feb/19
that′s correct sir.    i considered it too,  but this doesn′t  help so much if we try to solve with  trigonometrical method.  but it helps  more if we try to use coordinate  method.
thatscorrectsir.iconsideredittoo,butthisdoesnthelpsomuchifwetrytosolvewithtrigonometricalmethod.butithelpsmoreifwetrytousecoordinatemethod.
Answered by ajfour last updated on 03/Feb/19
Commented by ajfour last updated on 03/Feb/19
I finally got  (((h−R+Rcos θ)tan 2θ+3b−2Rsin θ)/(h−tan 2θ(2b−Rsin θ)))     =((2b−Rsin θ)/(h−R+Rcos θ)) =tan 𝛂  And for  h=((5R)/2) , b=((3R)/2)  θ=80.5644° , α=50.43038°.
Ifinallygot(hR+Rcosθ)tan2θ+3b2Rsinθhtan2θ(2bRsinθ)=2bRsinθhR+Rcosθ=tanαAndforh=5R2,b=3R2θ=80.5644°,α=50.43038°.
Commented by mr W last updated on 03/Feb/19
only 80.5644° is the solution. light ray  can not go through the circle. 90° is  the solution when (h/R)=5 and (b/R)=1.5.
only80.5644°isthesolution.lightraycannotgothroughthecircle.90°isthesolutionwhenhR=5andbR=1.5.
Commented by ajfour last updated on 03/Feb/19
yes Sir, you are right.
yesSir,youareright.
Commented by mr W last updated on 03/Feb/19
B(R sin θ,−R cos θ)  slope of OB:  tan ϕ_(OB) =−(1/(tan θ))  slope of BS′:  tan ϕ_(BS′) =((h−R+R cos θ)/(2b−R sin θ))  slope of BC:  tan ϕ_(BC) =((−R+R cos θ)/(b−R sin θ))  ϕ_(BS′) −ϕ_(OB) =ϕ_(OB) −ϕ_(BC)   tan (ϕ_(BS′) −ϕ_(OB) )=tan (ϕ_(OB) −ϕ_(BC) )  ((((h−R+R cos θ)/(2b−R sin θ))+(1/(tan θ)))/(1−((h−R+R cos θ)/(2b−R sin θ))×(1/(tan θ))))=((−(1/(tan θ))−((−R+R cos θ)/(b−R sin θ)))/(1−(1/(tan θ))×((−R+R cos θ)/(b−R sin θ))))  (((h−R+R cos θ)sin θ+(2b−R sin θ)cos θ)/((2b−R sin θ)sin θ−(h−R+R cos θ)cos θ))=((R(1−cos θ)sin θ−(b−R sin θ)cos θ)/((b−R sin θ)sin θ+R(1−cos θ)cos θ))  (((h−R)sin θ+2b cos θ)/(2b sin θ−(h−R)cos θ−R))=((R sin θ−b cos θ)/(b sin θ+R cos θ−R))  ⇒(((λ−1)sin θ+2δ cos θ)/(2δ sin θ−(λ−1)cos θ−1))=((sin θ−δ cos θ)/(δ sin θ+cos θ−1))
B(Rsinθ,Rcosθ)slopeofOB:tanφOB=1tanθslopeofBS:tanφBS=hR+Rcosθ2bRsinθslopeofBC:tanφBC=R+RcosθbRsinθφBSφOB=φOBφBCtan(φBSφOB)=tan(φOBφBC)hR+Rcosθ2bRsinθ+1tanθ1hR+Rcosθ2bRsinθ×1tanθ=1tanθR+RcosθbRsinθ11tanθ×R+RcosθbRsinθ(hR+Rcosθ)sinθ+(2bRsinθ)cosθ(2bRsinθ)sinθ(hR+Rcosθ)cosθ=R(1cosθ)sinθ(bRsinθ)cosθ(bRsinθ)sinθ+R(1cosθ)cosθ(hR)sinθ+2bcosθ2bsinθ(hR)cosθR=Rsinθbcosθbsinθ+RcosθR(λ1)sinθ+2δcosθ2δsinθ(λ1)cosθ1=sinθδcosθδsinθ+cosθ1
Commented by ajfour last updated on 04/Feb/19
but if we let    𝛒^2 =(λ−1)^2 +(2δ)^2  ;  φ=tan^(−1) (((λ−1)/(2δ)))    𝛍^2 =1+δ^2    and  ψ=tan^(−1) ((1/δ))     ((ρcos (θ−φ))/(ρsin (θ−φ)−1)) = ((−μcos (θ+ψ))/(μsin (θ+ψ)−1))  ____________________________  ⇒ μρsin (2θ−φ+ψ)              = ρcos (θ−φ)+μcos (θ+ψ)   ____________________________.
butifweletρ2=(λ1)2+(2δ)2;ϕ=tan1(λ12δ)μ2=1+δ2andψ=tan1(1δ)ρcos(θϕ)ρsin(θϕ)1=μcos(θ+ψ)μsin(θ+ψ)1____________________________μρsin(2θϕ+ψ)=ρcos(θϕ)+μcos(θ+ψ)____________________________.
Commented by mr W last updated on 04/Feb/19
best form for result!
bestformforresult!

Leave a Reply

Your email address will not be published. Required fields are marked *