Question Number 54447 by ajfour last updated on 03/Feb/19
Commented by ajfour last updated on 14/Feb/19
$${Find}\:{coordinates}\:{of}\:{A}\:{and}\:{C}.\:\:\:\:\:\:\:\: \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19
$${solve}\:\:{x}^{\mathrm{2}} ={ry}\:{and}\:\left({x}−{r}\right)^{\mathrm{2}} +\left({y}−{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\left({x}−{r}\right)^{\mathrm{2}} +\left(\frac{{x}^{\mathrm{2}} }{{r}}−{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{xr}+{r}^{\mathrm{2}} +\frac{{x}^{\mathrm{4}} }{{r}^{\mathrm{2}} }−\mathrm{2}{x}^{\mathrm{2}} +{r}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\frac{{x}^{\mathrm{4}} }{{r}^{\mathrm{2}} }−{x}^{\mathrm{2}} −\mathrm{2}{xr}+{r}^{\mathrm{2}} =\mathrm{0} \\ $$$${x}^{\mathrm{4}} −{r}^{\mathrm{2}} {x}^{\mathrm{2}} −\mathrm{2}{xr}^{\mathrm{3}} +{r}^{\mathrm{4}} =\mathrm{0} \\ $$$${on}\:{solving}\:\:{we}\:{get}\:{four}\:{value}\:{of}\:{x} \\ $$$${so}\:{corresponding}\:{four}\:{value}\:{of}\:{y} \\ $$$${thus}\:{we}\:{can}\:{get}\:{co}\:{iridinate}\:{of}\:\:{point}\:{A}\:{and}\:{C} \\ $$$${ok}\:{le}\:{t}\:{try}\:{to}\:{solve}… \\ $$$${let}\:\frac{{x}}{{r}}={k} \\ $$$$\frac{{x}^{\mathrm{4}} }{{r}^{\mathrm{4}} }−\frac{{x}^{\mathrm{2}} }{{r}^{\mathrm{2}} }−\frac{\mathrm{2}{x}}{{r}}+\mathrm{1}=\mathrm{0} \\ $$$${k}^{\mathrm{4}} −{k}^{\mathrm{2}} −\mathrm{2}{k}+\mathrm{1}=\mathrm{0} \\ $$$${f}\left({k}\right)={k}^{\mathrm{4}} −{k}^{\mathrm{2}} −\mathrm{2}{k}+\mathrm{1}={k}^{\mathrm{4}} −{k}^{\mathrm{2}} −\mathrm{2}{k}−\mathrm{1}+\mathrm{2}={k}^{\mathrm{4}} +\mathrm{2}−\left({k}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$${f}\left(\mathrm{0}\right)>\mathrm{0} \\ $$$${f}\left(\mathrm{1}\right)<\mathrm{0} \\ $$$${f}\left(\mathrm{0}.\mathrm{5}\right)=\frac{\mathrm{1}}{\mathrm{16}}−\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{2}}{\mathrm{2}}+\mathrm{1}<\mathrm{0} \\ $$$${f}\left(\mathrm{0}.\mathrm{4}\right)=\mathrm{0}.\mathrm{0256}+\mathrm{2}−\mathrm{1}.\mathrm{96}>\mathrm{0} \\ $$$${so}\:{value}\:{of}\:\left[\mathrm{0}.\mathrm{5}\:>{k}>\mathrm{0}.\mathrm{4}\right] \\ $$$${thus}\:\:\:\:\mathrm{0}.\mathrm{5}>\frac{{x}}{{r}}>\mathrm{0}.\mathrm{4} \\ $$$${so}\:\:\:\mathrm{0}.\mathrm{5}{r}>{x}>\mathrm{0}.\mathrm{4}{r} \\ $$$${thus}\:\:{x}=\left(\mathrm{0}.\mathrm{4}+\epsilon\right){r}\:\:\:\epsilon={is}\:{a}\:{small}\:{number}… \\ $$
Commented by ajfour last updated on 03/Feb/19
$${why}\:{not}\:{solve}\:{it},\:{Sir}\:? \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19
$${i}\:{can}\:{not}\:{solve}\:{without}\:{numirical}\:{value}.. \\ $$$${if}\:{numirical}\:{value}\:{present}\:{i}\:{can}\:{use}\:{calculus}.. \\ $$$${but}\:{general}\:{eqn}…{i}\:{can}\:{not}\:{solve}… \\ $$
Commented by ajfour last updated on 03/Feb/19
$${it}\:{can}\:{be}\:{converted}\:{to}\:{one}\:{like} \\ $$$${numerical}\:{value},\:{but}\:{still}\:{let}\:{us}\:{not} \\ $$$${use}\:{calculator}. \\ $$
Commented by ajfour last updated on 03/Feb/19
$${thanks}\:{for}\:{trying},\:{Sir}. \\ $$
Answered by ajfour last updated on 04/Feb/19
$$\left({x}−{r}\right)^{\mathrm{2}} +\left({y}−{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \:\:\:\:\left({circle}\:{eq}.\right) \\ $$$${y}={x}^{\mathrm{2}} /{r}\:\:\:\:\:\:\:\:\:\:\:\:\:\left({parabola}\:{eq}.\right) \\ $$$${for}\:{x}=\:{x}_{{A}} ,\:{x}_{{C}} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{rx}+\frac{{x}^{\mathrm{4}} }{{r}^{\mathrm{2}} }−\mathrm{2}{x}^{\mathrm{2}} +{r}^{\mathrm{2}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\frac{{x}^{\mathrm{4}} }{{r}^{\mathrm{2}} }−{x}^{\mathrm{2}} −\mathrm{2}{rx}+{r}^{\mathrm{2}} =\mathrm{0} \\ $$$${if}\:\:\:{x}/{r}\:={t} \\ $$$$\:\Rightarrow\:\:\:{t}^{\mathrm{4}} −{t}^{\mathrm{2}} −\mathrm{2}{t}+\mathrm{1}=\mathrm{0}\:\:\:\:\:\:….\left({i}\right) \\ $$$${let}\:{us}\:{assume}\:{equivalently} \\ $$$$\:\:\:\:\:\left({t}^{\mathrm{2}} −{pt}+{q}\right)\left({t}^{\mathrm{2}} +{pt}+\frac{\mathrm{1}}{{q}}\right)=\mathrm{0} \\ $$$$\Rightarrow\:{t}^{\mathrm{4}} +\left({q}+\frac{\mathrm{1}}{{q}}−{p}^{\mathrm{2}} \right){t}^{\mathrm{2}} +\left({pq}−\frac{{p}}{{q}}\right){t}+\mathrm{1}=\mathrm{0} \\ $$$${comparing}\:{with}\:\left({i}\right) \\ $$$$\:\:\:\:\boldsymbol{{q}}+\frac{\mathrm{1}}{\boldsymbol{{q}}}=\:\boldsymbol{{p}}^{\mathrm{2}} −\mathrm{1}\:\:\:{and}\:\:\boldsymbol{{q}}−\frac{\mathrm{1}}{\boldsymbol{{q}}}=−\frac{\mathrm{2}}{\boldsymbol{{p}}} \\ $$$$\Rightarrow\:\:\left({p}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} −\frac{\mathrm{4}}{{p}^{\mathrm{2}} }\:=\:\mathrm{4} \\ $$$${let}\:{us}\:{call}\:\:{p}^{\mathrm{2}} ={s} \\ $$$$\Rightarrow\:\:{s}\left({s}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}{s}−\mathrm{4}=\mathrm{0} \\ $$$${let}\:{s}−\mathrm{1}=\:{u} \\ $$$$\Rightarrow\:\:\left({u}+\mathrm{1}\right){u}^{\mathrm{2}} −\mathrm{4}\left({u}+\mathrm{2}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\:\:{u}^{\mathrm{3}} +{u}^{\mathrm{2}} −\mathrm{4}{u}−\mathrm{8}=\mathrm{0} \\ $$$${let}\:\:{u}={z}−\mathrm{1}/\mathrm{3} \\ $$$$\Rightarrow\:\:{z}^{\mathrm{3}} −\underset{−} {{z}}^{\mathrm{2}} +\frac{{z}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{27}}+\underset{−} {{z}}^{\mathrm{2}} −\frac{\mathrm{2}{z}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{9}} \\ $$$$\:\:\:\:\:\:\:\:\:\:−\mathrm{4}{z}+\frac{\mathrm{4}}{\mathrm{3}}−\mathrm{8}=\mathrm{0} \\ $$$${or}\:\:\:{z}^{\mathrm{3}} −\frac{\mathrm{13}}{\mathrm{3}}{z}−\frac{\mathrm{178}}{\mathrm{27}}=\mathrm{0} \\ $$$$\:\:\:\:{z}=\:\left(\frac{\mathrm{89}}{\mathrm{27}}+\sqrt{\frac{\mathrm{89}^{\mathrm{2}} }{\mathrm{27}^{\mathrm{2}} }−\frac{\mathrm{13}^{\mathrm{3}} }{\mathrm{27}^{\mathrm{2}} }}\:\right)^{\mathrm{1}/\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\left(\frac{\mathrm{89}}{\mathrm{27}}−\sqrt{\left(\frac{\mathrm{89}}{\mathrm{27}^{\mathrm{2}} }−\frac{\mathrm{13}^{\mathrm{3}} }{\mathrm{27}^{\mathrm{2}} }\right.}\:\right)^{\mathrm{1}/\mathrm{3}} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{3}}\left\{\left(\mathrm{89}+\mathrm{6}\sqrt{\mathrm{159}}\right)^{\mathrm{1}/\mathrm{3}} +\left(\mathrm{89}−\mathrm{6}\sqrt{\mathrm{159}}\right)^{\mathrm{1}/\mathrm{3}} \right. \\ $$$${now}\:\:\:{p}^{\mathrm{2}} ={s}={u}+\mathrm{1}\:=\:{z}+\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${since}\:{t}_{{A}} >\mathrm{0}\:{and}\:{t}_{{C}} \:>\mathrm{0} \\ $$$${let}'{s}\:{first}\:{choose}\:\:\left({t}^{\mathrm{2}} −{pt}+{q}\right)=\mathrm{0} \\ $$$${with}\:{p}_{\mathrm{1}} >\mathrm{0}\: \\ $$$${p}_{\mathrm{1}} =\sqrt{\frac{\mathrm{2}+\left(\mathrm{89}+\mathrm{6}\sqrt{\mathrm{159}}\right)^{\mathrm{1}/\mathrm{3}} +\left(\mathrm{89}−\mathrm{6}\sqrt{\mathrm{159}}\right)^{\mathrm{1}/\mathrm{3}} }{\mathrm{3}}} \\ $$$$\:\:\:\:\approx\:\mathrm{1}.\mathrm{81226} \\ $$$$\frac{{D}}{\mathrm{4}}=\:\frac{{p}^{\mathrm{2}} }{\mathrm{4}}−{q}\: \\ $$$$\:{as}\:\:{q}=\:\frac{\left({p}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{2}}−\frac{\mathrm{1}}{{p}} \\ $$$$\frac{{D}}{\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{{p}}−\frac{{p}^{\mathrm{2}} }{\mathrm{4}}\:\approx\:\mathrm{0}.\mathrm{23073} \\ $$$${if}\:{it}\:{is}\:{positive}\:{then} \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${with}\: \\ $$$${p}_{\mathrm{1}} =\sqrt{\frac{\mathrm{2}+\left(\mathrm{89}+\mathrm{6}\sqrt{\mathrm{159}}\right)^{\mathrm{1}/\mathrm{3}} +\left(\mathrm{89}−\mathrm{6}\sqrt{\mathrm{159}}\right)^{\mathrm{1}/\mathrm{3}} }{\mathrm{3}}} \\ $$$$\:\:{x}_{{A}} ={r}\left(\:\frac{{p}_{\mathrm{1}} }{\mathrm{2}}−\sqrt{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{{p}_{\mathrm{1}} }−\frac{{p}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{4}}}\right) \\ $$$$\Rightarrow\:\:{x}_{{A}} \approx\:\mathrm{0}.\mathrm{4258}\:{r}\:\:\:,\:\:\:{y}_{{A}} ={x}_{{A}} ^{\mathrm{2}} /{r} \\ $$$$\:\:\:\:\:\:{x}_{{C}} ={r}\left(\:\frac{{p}_{\mathrm{1}} }{\mathrm{2}}+\sqrt{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{{p}_{\mathrm{1}} }−\frac{{p}_{\mathrm{1}} ^{\mathrm{2}} }{\mathrm{4}}}\right) \\ $$$$\Rightarrow\:\:{x}_{{C}} \:\approx\:\mathrm{1}.\mathrm{3865}\:{r}\:\:\:,\:\:\:\:{y}_{{C}} ={x}_{{C}} ^{\mathrm{2}} /{r}\: \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\blacksquare \\ $$