Menu Close

Question-54481




Question Number 54481 by ajfour last updated on 04/Feb/19
Commented by ajfour last updated on 04/Feb/19
Find eq. of circle and coordinates  of points A,B,C,D in terms of c.
$${Find}\:{eq}.\:{of}\:{circle}\:{and}\:{coordinates} \\ $$$${of}\:{points}\:{A},{B},{C},{D}\:{in}\:{terms}\:{of}\:\boldsymbol{{c}}. \\ $$
Answered by MJS last updated on 05/Feb/19
A= (((√c)),(0) )  B= ((p),((p^2 −c)) )  C= ((q),((q^2 −c)) )  D= (((√c)),(r) )  c≥0  normal in B:  n: y=−(x/(2p))−c+p^2 +(1/2)  D∈n∧∣Dn∣=r=−((√c)/(2p))−c+p^2 +(1/2)  ⇒ p^5 −2cp^3 +(√c)p^2 +c(c−2)p+(√c^3 )=0  (p−(√c))^2 (p^3 +2(√c)p^2 +cp+(√c))=0  p^3 +2(√c)p^2 +cp+(√c)=0  p=z−((2(√c))/3)  z^3 −(c/3)z−(((2c−27)(√c))/(27))=0  this has got 1 real solution for 0≤c<((27)/4),  2real solutions for c=((27)/4), 3 real solutions for c>((27)/4)  ⇒ we can calculate p ⇒ r, q for given c
$${A}=\begin{pmatrix}{\sqrt{{c}}}\\{\mathrm{0}}\end{pmatrix}\:\:{B}=\begin{pmatrix}{{p}}\\{{p}^{\mathrm{2}} −{c}}\end{pmatrix}\:\:{C}=\begin{pmatrix}{{q}}\\{{q}^{\mathrm{2}} −{c}}\end{pmatrix}\:\:{D}=\begin{pmatrix}{\sqrt{{c}}}\\{{r}}\end{pmatrix} \\ $$$${c}\geqslant\mathrm{0} \\ $$$$\mathrm{normal}\:\mathrm{in}\:{B}: \\ $$$${n}:\:{y}=−\frac{{x}}{\mathrm{2}{p}}−{c}+{p}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${D}\in{n}\wedge\mid{Dn}\mid={r}=−\frac{\sqrt{{c}}}{\mathrm{2}{p}}−{c}+{p}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\:{p}^{\mathrm{5}} −\mathrm{2}{cp}^{\mathrm{3}} +\sqrt{{c}}{p}^{\mathrm{2}} +{c}\left({c}−\mathrm{2}\right){p}+\sqrt{{c}^{\mathrm{3}} }=\mathrm{0} \\ $$$$\left({p}−\sqrt{{c}}\right)^{\mathrm{2}} \left({p}^{\mathrm{3}} +\mathrm{2}\sqrt{{c}}{p}^{\mathrm{2}} +{cp}+\sqrt{{c}}\right)=\mathrm{0} \\ $$$${p}^{\mathrm{3}} +\mathrm{2}\sqrt{{c}}{p}^{\mathrm{2}} +{cp}+\sqrt{{c}}=\mathrm{0} \\ $$$${p}={z}−\frac{\mathrm{2}\sqrt{{c}}}{\mathrm{3}} \\ $$$${z}^{\mathrm{3}} −\frac{{c}}{\mathrm{3}}{z}−\frac{\left(\mathrm{2}{c}−\mathrm{27}\right)\sqrt{{c}}}{\mathrm{27}}=\mathrm{0} \\ $$$$\mathrm{this}\:\mathrm{has}\:\mathrm{got}\:\mathrm{1}\:\mathrm{real}\:\mathrm{solution}\:\mathrm{for}\:\mathrm{0}\leqslant{c}<\frac{\mathrm{27}}{\mathrm{4}}, \\ $$$$\mathrm{2real}\:\mathrm{solutions}\:\mathrm{for}\:{c}=\frac{\mathrm{27}}{\mathrm{4}},\:\mathrm{3}\:\mathrm{real}\:\mathrm{solutions}\:\mathrm{for}\:{c}>\frac{\mathrm{27}}{\mathrm{4}} \\ $$$$\Rightarrow\:\mathrm{we}\:\mathrm{can}\:\mathrm{calculate}\:{p}\:\Rightarrow\:{r},\:{q}\:\mathrm{for}\:\mathrm{given}\:{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *