Menu Close

Question-54526




Question Number 54526 by Gulay last updated on 05/Feb/19
Commented by Gulay last updated on 05/Feb/19
sir plz help me
$$\mathrm{sir}\:\mathrm{plz}\:\mathrm{help}\:\mathrm{me} \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Feb/19
solve by reasoning...  ((16+8(√5)))^(1/3)  since  1)look (√5) is present  2)look all are +ve sign  so 8(√5) =3(√5) +5(√5) =3×1^2 ×(√5) +((√5) )^3   16=1+3×1×((√5) )^2 =1+15    so 16+8(√5)   =1^3 +3×1^2 ×(√5) +3×1×((√5) )^2 +((√5) )^3   =(1+(√5) )^3   hence ((16+8(√5)))^(1/3)  =1+(√5)   now(√(5+(√5) +((16+8(√5)))^(1/3)  ))  =(√(5+(√5) +1+(√5) ))  =(√(6+2(√5)))   =(√(5+1+2(√5) ))  =(√(((√5) )^2 +2×(√5) ×1+(1)^2 ))   =(√(((√5) +1)^2  ))  =(√5) +1
$${solve}\:{by}\:{reasoning}… \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{16}+\mathrm{8}\sqrt{\mathrm{5}}}\:{since} \\ $$$$\left.\mathrm{1}\right){look}\:\sqrt{\mathrm{5}}\:{is}\:{present} \\ $$$$\left.\mathrm{2}\right){look}\:{all}\:{are}\:+{ve}\:{sign} \\ $$$${so}\:\mathrm{8}\sqrt{\mathrm{5}}\:=\mathrm{3}\sqrt{\mathrm{5}}\:+\mathrm{5}\sqrt{\mathrm{5}}\:=\mathrm{3}×\mathrm{1}^{\mathrm{2}} ×\sqrt{\mathrm{5}}\:+\left(\sqrt{\mathrm{5}}\:\right)^{\mathrm{3}} \\ $$$$\mathrm{16}=\mathrm{1}+\mathrm{3}×\mathrm{1}×\left(\sqrt{\mathrm{5}}\:\right)^{\mathrm{2}} =\mathrm{1}+\mathrm{15} \\ $$$$ \\ $$$${so}\:\mathrm{16}+\mathrm{8}\sqrt{\mathrm{5}}\: \\ $$$$=\mathrm{1}^{\mathrm{3}} +\mathrm{3}×\mathrm{1}^{\mathrm{2}} ×\sqrt{\mathrm{5}}\:+\mathrm{3}×\mathrm{1}×\left(\sqrt{\mathrm{5}}\:\right)^{\mathrm{2}} +\left(\sqrt{\mathrm{5}}\:\right)^{\mathrm{3}} \\ $$$$=\left(\mathrm{1}+\sqrt{\mathrm{5}}\:\right)^{\mathrm{3}} \\ $$$${hence}\:\sqrt[{\mathrm{3}}]{\mathrm{16}+\mathrm{8}\sqrt{\mathrm{5}}}\:=\mathrm{1}+\sqrt{\mathrm{5}}\: \\ $$$${now}\sqrt{\mathrm{5}+\sqrt{\mathrm{5}}\:+\sqrt[{\mathrm{3}}]{\mathrm{16}+\mathrm{8}\sqrt{\mathrm{5}}}\:} \\ $$$$=\sqrt{\mathrm{5}+\sqrt{\mathrm{5}}\:+\mathrm{1}+\sqrt{\mathrm{5}}\:} \\ $$$$=\sqrt{\mathrm{6}+\mathrm{2}\sqrt{\mathrm{5}}}\: \\ $$$$=\sqrt{\mathrm{5}+\mathrm{1}+\mathrm{2}\sqrt{\mathrm{5}}\:} \\ $$$$=\sqrt{\left(\sqrt{\mathrm{5}}\:\right)^{\mathrm{2}} +\mathrm{2}×\sqrt{\mathrm{5}}\:×\mathrm{1}+\left(\mathrm{1}\right)^{\mathrm{2}} }\: \\ $$$$=\sqrt{\left(\sqrt{\mathrm{5}}\:+\mathrm{1}\right)^{\mathrm{2}} \:} \\ $$$$=\sqrt{\mathrm{5}}\:+\mathrm{1} \\ $$
Commented by Gulay last updated on 05/Feb/19
thank you so much sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *