Menu Close

Question-54679




Question Number 54679 by Raj Singh last updated on 09/Feb/19
Commented by maxmathsup by imad last updated on 09/Feb/19
let f(x)=(1/( (√(x+a))))  for x>−a  we have f^′ (x)=lim_(h→0)  ((f(x+h)−f(x))/h)  =lim_(h→0)   (((1/( (√(x+h+a))  ))−(1/( (√(x+a)))))/h) =lim_(h→0)   (((√(x+a))−(√(x+h+a)))/(h(√(x+a))(√(x+h+a))))  =lim_(h→0)   ((x+a−x−h−a)/(h(√(x+a))(√(x+h+a))((√(x+a))+(√(x+h+a)))))  =lim_(h→0)     ((−1)/( (√(x+a))(√(x+h+a))((√(x+a))+(√(x+h+a))))) =((−1)/(2(x+a)(√(x+a)))) ⇒  f^′ (x) =((−1)/(2(x+a)(√(x+a)))) .
$${let}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\:\sqrt{{x}+{a}}}\:\:{for}\:{x}>−{a}\:\:{we}\:{have}\:{f}^{'} \left({x}\right)={lim}_{{h}\rightarrow\mathrm{0}} \:\frac{{f}\left({x}+{h}\right)−{f}\left({x}\right)}{{h}} \\ $$$$={lim}_{{h}\rightarrow\mathrm{0}} \:\:\frac{\frac{\mathrm{1}}{\:\sqrt{{x}+{h}+{a}}\:\:}−\frac{\mathrm{1}}{\:\sqrt{{x}+{a}}}}{{h}}\:={lim}_{{h}\rightarrow\mathrm{0}} \:\:\frac{\sqrt{{x}+{a}}−\sqrt{{x}+{h}+{a}}}{{h}\sqrt{{x}+{a}}\sqrt{{x}+{h}+{a}}} \\ $$$$={lim}_{{h}\rightarrow\mathrm{0}} \:\:\frac{{x}+{a}−{x}−{h}−{a}}{{h}\sqrt{{x}+{a}}\sqrt{{x}+{h}+{a}}\left(\sqrt{{x}+{a}}+\sqrt{{x}+{h}+{a}}\right)} \\ $$$$={lim}_{{h}\rightarrow\mathrm{0}} \:\:\:\:\frac{−\mathrm{1}}{\:\sqrt{{x}+{a}}\sqrt{{x}+{h}+{a}}\left(\sqrt{{x}+{a}}+\sqrt{{x}+{h}+{a}}\right)}\:=\frac{−\mathrm{1}}{\mathrm{2}\left({x}+{a}\right)\sqrt{{x}+{a}}}\:\Rightarrow \\ $$$${f}^{'} \left({x}\right)\:=\frac{−\mathrm{1}}{\mathrm{2}\left({x}+{a}\right)\sqrt{{x}+{a}}}\:. \\ $$$$ \\ $$
Answered by kaivan.ahmadi last updated on 09/Feb/19
y′=((−(1/(2(√(x+a)))))/(x+a))=((−1)/(2(x+a)(√(x+a))))
$$\mathrm{y}'=\frac{−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{x}+\mathrm{a}}}}{\mathrm{x}+\mathrm{a}}=\frac{−\mathrm{1}}{\mathrm{2}\left(\mathrm{x}+\mathrm{a}\right)\sqrt{\mathrm{x}+\mathrm{a}}} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 09/Feb/19
y=(1/( (√(x+a))))  y+△y=(1/( (√(x+△x+a))))  △y=(1/( (√(x+△x+a))))−(1/( (√(x+a))))  △y=(((√(x+a)) −(√(x+△x+a)))/( (√(x+a)) ×(√(x+△x+a)) ))  △y=(((x+a)−(x+△x+a))/({(√(x+a)) ×(√(x+△x+a)) }{(√(x+a)) +(√(x+△x+a)) }))  ((△y)/(△x))=((−1)/({(√(x+a)) ×(√(x+△x+a)) }{(√(x+a)) +(√(x+△x+a)) }))  (dy/dx)=lim_(△x→0)  ((△y)/(△x))  so answer is  (dy/dx)=((−1)/({(√(x+a)) ×(√(x+a)) }{(√(x+a)) +(√(x+a)) }))  (dy/dx)=((−1)/(2(x+a)^(3/2) ))
$${y}=\frac{\mathrm{1}}{\:\sqrt{{x}+{a}}} \\ $$$${y}+\bigtriangleup{y}=\frac{\mathrm{1}}{\:\sqrt{{x}+\bigtriangleup{x}+{a}}} \\ $$$$\bigtriangleup{y}=\frac{\mathrm{1}}{\:\sqrt{{x}+\bigtriangleup{x}+{a}}}−\frac{\mathrm{1}}{\:\sqrt{{x}+{a}}} \\ $$$$\bigtriangleup{y}=\frac{\sqrt{{x}+{a}}\:−\sqrt{{x}+\bigtriangleup{x}+{a}}}{\:\sqrt{{x}+{a}}\:×\sqrt{{x}+\bigtriangleup{x}+{a}}\:} \\ $$$$\bigtriangleup{y}=\frac{\left({x}+{a}\right)−\left({x}+\bigtriangleup{x}+{a}\right)}{\left\{\sqrt{{x}+{a}}\:×\sqrt{{x}+\bigtriangleup{x}+{a}}\:\right\}\left\{\sqrt{{x}+{a}}\:+\sqrt{{x}+\bigtriangleup{x}+{a}}\:\right\}} \\ $$$$\frac{\bigtriangleup{y}}{\bigtriangleup{x}}=\frac{−\mathrm{1}}{\left\{\sqrt{{x}+{a}}\:×\sqrt{{x}+\bigtriangleup{x}+{a}}\:\right\}\left\{\sqrt{{x}+{a}}\:+\sqrt{{x}+\bigtriangleup{x}+{a}}\:\right\}} \\ $$$$\frac{{dy}}{{dx}}=\underset{\bigtriangleup{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\bigtriangleup{y}}{\bigtriangleup{x}} \\ $$$${so}\:{answer}\:{is} \\ $$$$\frac{{dy}}{{dx}}=\frac{−\mathrm{1}}{\left\{\sqrt{{x}+{a}}\:×\sqrt{{x}+{a}}\:\right\}\left\{\sqrt{{x}+{a}}\:+\sqrt{{x}+{a}}\:\right\}} \\ $$$$\frac{{dy}}{{dx}}=\frac{−\mathrm{1}}{\mathrm{2}\left({x}+{a}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *