Menu Close

Question-55055




Question Number 55055 by peter frank last updated on 16/Feb/19
Answered by mr W last updated on 16/Feb/19
T_n =(1+(1/n))(1−(1/n^2 ))=(((n−1))/n)×(((n+1))/n)×(((n+1))/n)  T_2 =(1/2)×(3/2)×(3/2)  T_3 =(2/3)×(4/3)×(4/3)  T_4 =(3/4)×(5/4)×(5/4)  ....  T_k =((k−1)/k)×((k+1)/k)×((k+1)/k)  T_2 T_3 ...T_k =(1/k)×((k+1)/2)×((k+1)/2)=(((k+1)^2 )/(4k))>2012  k^2 +2k+1>8048k  k^2 −8046k+1>0  (k−4023)^2 >4023^2 −1  ⇒k>4023+(√(4023^2 −1))  ⇒k_(min) =4023+4023=8046
Tn=(1+1n)(11n2)=(n1)n×(n+1)n×(n+1)nT2=12×32×32T3=23×43×43T4=34×54×54.Tk=k1k×k+1k×k+1kT2T3Tk=1k×k+12×k+12=(k+1)24k>2012k2+2k+1>8048kk28046k+1>0(k4023)2>402321k>4023+402321kmin=4023+4023=8046

Leave a Reply

Your email address will not be published. Required fields are marked *