Menu Close

Question-55217




Question Number 55217 by peter frank last updated on 19/Feb/19
Answered by mr W last updated on 19/Feb/19
Commented by mr W last updated on 20/Feb/19
(i) is clear, since thread is weightless.    (ii)  tension in thread=T  2T cos (θ/2)=W  2T sin β+γλ=W  ⇒2T(cos (θ/2)−sin β)=γλ  ⇒T=((γλ)/(2(cos (θ/2)−sin β)))    an other way:  T=γR  R(cos (θ/2)−sin β)=(λ/2)  ⇒R=(λ/(2(cos (θ/2)−sin β)))  ⇒T=((γλ)/(2(cos (θ/2)−sin β)))
$$\left({i}\right)\:{is}\:{clear},\:{since}\:{thread}\:{is}\:{weightless}. \\ $$$$ \\ $$$$\left({ii}\right) \\ $$$${tension}\:{in}\:{thread}={T} \\ $$$$\mathrm{2}{T}\:\mathrm{cos}\:\frac{\theta}{\mathrm{2}}={W} \\ $$$$\mathrm{2}{T}\:\mathrm{sin}\:\beta+\gamma\lambda={W} \\ $$$$\Rightarrow\mathrm{2}{T}\left(\mathrm{cos}\:\frac{\theta}{\mathrm{2}}−\mathrm{sin}\:\beta\right)=\gamma\lambda \\ $$$$\Rightarrow{T}=\frac{\gamma\lambda}{\mathrm{2}\left(\mathrm{cos}\:\frac{\theta}{\mathrm{2}}−\mathrm{sin}\:\beta\right)} \\ $$$$ \\ $$$${an}\:{other}\:{way}: \\ $$$${T}=\gamma{R} \\ $$$${R}\left(\mathrm{cos}\:\frac{\theta}{\mathrm{2}}−\mathrm{sin}\:\beta\right)=\frac{\lambda}{\mathrm{2}} \\ $$$$\Rightarrow{R}=\frac{\lambda}{\mathrm{2}\left(\mathrm{cos}\:\frac{\theta}{\mathrm{2}}−\mathrm{sin}\:\beta\right)} \\ $$$$\Rightarrow{T}=\frac{\gamma\lambda}{\mathrm{2}\left(\mathrm{cos}\:\frac{\theta}{\mathrm{2}}−\mathrm{sin}\:\beta\right)} \\ $$
Commented by peter frank last updated on 20/Feb/19
why cos (θ/2)?
$$\mathrm{why}\:\mathrm{cos}\:\frac{\theta}{\mathrm{2}}? \\ $$
Commented by mr W last updated on 20/Feb/19
you can see in my diagram. if θ is  the angle between the two parts of  the thread at midpoint, then (θ/2) is  the angle between thread and vertical  direction.
$${you}\:{can}\:{see}\:{in}\:{my}\:{diagram}.\:{if}\:\theta\:{is} \\ $$$${the}\:{angle}\:{between}\:{the}\:{two}\:{parts}\:{of} \\ $$$${the}\:{thread}\:{at}\:{midpoint},\:{then}\:\frac{\theta}{\mathrm{2}}\:{is} \\ $$$${the}\:{angle}\:{between}\:{thread}\:{and}\:{vertical} \\ $$$${direction}. \\ $$
Commented by mr W last updated on 20/Feb/19
or you draw a diagram showing which  angles are meant with β and θ in the  question.
$${or}\:{you}\:{draw}\:{a}\:{diagram}\:{showing}\:{which} \\ $$$${angles}\:{are}\:{meant}\:{with}\:\beta\:{and}\:\theta\:{in}\:{the} \\ $$$${question}. \\ $$
Commented by peter frank last updated on 22/Feb/19
thank sir
$$\mathrm{thank}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *