Menu Close

Question-55316




Question Number 55316 by Kunal12588 last updated on 21/Feb/19
Commented by Kunal12588 last updated on 21/Feb/19
pls help me i found 2519 but don′t know is this   smallest. also it takes 2 hrs for me   every answers are welcome
$${pls}\:{help}\:{me}\:{i}\:{found}\:\mathrm{2519}\:{but}\:{don}'{t}\:{know}\:{is}\:{this}\: \\ $$$${smallest}.\:{also}\:{it}\:{takes}\:\mathrm{2}\:{hrs}\:{for}\:{me} \\ $$$$\:{every}\:{answers}\:{are}\:{welcome} \\ $$
Answered by $@ty@m last updated on 21/Feb/19
General formula for such questions:  Required number=  LCM of divisors−common difference of  divisor & remainder  =2520−1  =2519
$${General}\:{formula}\:{for}\:{such}\:{questions}: \\ $$$${Required}\:{number}= \\ $$$${LCM}\:{of}\:{divisors}−{common}\:{difference}\:{of} \\ $$$${divisor}\:\&\:{remainder} \\ $$$$=\mathrm{2520}−\mathrm{1} \\ $$$$=\mathrm{2519} \\ $$
Commented by Kunal12588 last updated on 21/Feb/19
thank you sir
$${thank}\:{you}\:{sir} \\ $$
Commented by Kunal12588 last updated on 21/Feb/19
i think you are doing this  n=2x_1 +1=2(x_1 +1)−1  n=3x_2 +2=3(x_2 +1)−1  n=4x_3 +3=4(x_3 +1)−1  n=5x_4 +4=5(x_4 +1)−1  n=6x_5 +5=6(x_5 +1)−1  n=7x_6 +6=7(x_6 +1)−1  n=8x_7 +7=8(x_7 +1)−1  n=9x_8 +8=9(x_8 +1)−1  n=10x_9 +9=10(x_9 +1)−1  so, n = multiple of (1,2,3,4,5,6,7,8,9,10) −1  smallest no.  n=LCM(1,2,3...,9,10)−1  n=2520−1=2519
$${i}\:{think}\:{you}\:{are}\:{doing}\:{this} \\ $$$${n}=\mathrm{2}{x}_{\mathrm{1}} +\mathrm{1}=\mathrm{2}\left({x}_{\mathrm{1}} +\mathrm{1}\right)−\mathrm{1} \\ $$$${n}=\mathrm{3}{x}_{\mathrm{2}} +\mathrm{2}=\mathrm{3}\left({x}_{\mathrm{2}} +\mathrm{1}\right)−\mathrm{1} \\ $$$${n}=\mathrm{4}{x}_{\mathrm{3}} +\mathrm{3}=\mathrm{4}\left({x}_{\mathrm{3}} +\mathrm{1}\right)−\mathrm{1} \\ $$$${n}=\mathrm{5}{x}_{\mathrm{4}} +\mathrm{4}=\mathrm{5}\left({x}_{\mathrm{4}} +\mathrm{1}\right)−\mathrm{1} \\ $$$${n}=\mathrm{6}{x}_{\mathrm{5}} +\mathrm{5}=\mathrm{6}\left({x}_{\mathrm{5}} +\mathrm{1}\right)−\mathrm{1} \\ $$$${n}=\mathrm{7}{x}_{\mathrm{6}} +\mathrm{6}=\mathrm{7}\left({x}_{\mathrm{6}} +\mathrm{1}\right)−\mathrm{1} \\ $$$${n}=\mathrm{8}{x}_{\mathrm{7}} +\mathrm{7}=\mathrm{8}\left({x}_{\mathrm{7}} +\mathrm{1}\right)−\mathrm{1} \\ $$$${n}=\mathrm{9}{x}_{\mathrm{8}} +\mathrm{8}=\mathrm{9}\left({x}_{\mathrm{8}} +\mathrm{1}\right)−\mathrm{1} \\ $$$${n}=\mathrm{10}{x}_{\mathrm{9}} +\mathrm{9}=\mathrm{10}\left({x}_{\mathrm{9}} +\mathrm{1}\right)−\mathrm{1} \\ $$$${so},\:{n}\:=\:{multiple}\:{of}\:\left(\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{7},\mathrm{8},\mathrm{9},\mathrm{10}\right)\:−\mathrm{1} \\ $$$${smallest}\:{no}. \\ $$$${n}={LCM}\left(\mathrm{1},\mathrm{2},\mathrm{3}…,\mathrm{9},\mathrm{10}\right)−\mathrm{1} \\ $$$${n}=\mathrm{2520}−\mathrm{1}=\mathrm{2519} \\ $$
Commented by Kunal12588 last updated on 21/Feb/19
i actually do it like this quite long  n=10x_9 +9=9x_8 +8  9x_8 =10x_9 +1  after some algebra  2x_1 =10x_9 +8  or x_1 =5x_9 +4  3x_2 =10x_9 +7  4x_3 =10x_9 +6  or 2x_3 =5x_9 +3  5x_4 =10x_9 +5 or  x_4 =2x_9 +1  6x_5 =10x_9 +4  or 3x_5 =5x_9 +2  7x_6 =10x_9 +3   8x_7 =10x_9 +2  or 4x_7 =5x_9 +1  9x_8 =10x_9 +1  after rearranging and reasoning  like this one :−  7x_6 =10x_9 +3=7x_9 +3(x_9 +1)  x_6 =x_9 +3×((x_9 +1)/7)  ∵ n is natural no.   ∴x_6 ∈Z   ∴ x_9 +1 is a multiple of 7  so, i get  x_9 +1 is a multiple of  9,7 and 4  or x_9 +1 is a multiple of 252  lowest value of x_9 +1=252  x_9 =251  now, at last putting the value of x_9  in n=10x_9 +9  n=10×251+9=2519
$${i}\:{actually}\:{do}\:{it}\:{like}\:{this}\:{quite}\:{long} \\ $$$${n}=\mathrm{10}{x}_{\mathrm{9}} +\mathrm{9}=\mathrm{9}{x}_{\mathrm{8}} +\mathrm{8} \\ $$$$\mathrm{9}{x}_{\mathrm{8}} =\mathrm{10}{x}_{\mathrm{9}} +\mathrm{1} \\ $$$${after}\:{some}\:{algebra} \\ $$$$\mathrm{2}{x}_{\mathrm{1}} =\mathrm{10}{x}_{\mathrm{9}} +\mathrm{8}\:\:{or}\:{x}_{\mathrm{1}} =\mathrm{5}{x}_{\mathrm{9}} +\mathrm{4} \\ $$$$\mathrm{3}{x}_{\mathrm{2}} =\mathrm{10}{x}_{\mathrm{9}} +\mathrm{7} \\ $$$$\mathrm{4}{x}_{\mathrm{3}} =\mathrm{10}{x}_{\mathrm{9}} +\mathrm{6}\:\:{or}\:\mathrm{2}{x}_{\mathrm{3}} =\mathrm{5}{x}_{\mathrm{9}} +\mathrm{3} \\ $$$$\mathrm{5}{x}_{\mathrm{4}} =\mathrm{10}{x}_{\mathrm{9}} +\mathrm{5}\:{or}\:\:{x}_{\mathrm{4}} =\mathrm{2}{x}_{\mathrm{9}} +\mathrm{1} \\ $$$$\mathrm{6}{x}_{\mathrm{5}} =\mathrm{10}{x}_{\mathrm{9}} +\mathrm{4}\:\:{or}\:\mathrm{3}{x}_{\mathrm{5}} =\mathrm{5}{x}_{\mathrm{9}} +\mathrm{2} \\ $$$$\mathrm{7}{x}_{\mathrm{6}} =\mathrm{10}{x}_{\mathrm{9}} +\mathrm{3}\: \\ $$$$\mathrm{8}{x}_{\mathrm{7}} =\mathrm{10}{x}_{\mathrm{9}} +\mathrm{2}\:\:{or}\:\mathrm{4}{x}_{\mathrm{7}} =\mathrm{5}{x}_{\mathrm{9}} +\mathrm{1} \\ $$$$\mathrm{9}{x}_{\mathrm{8}} =\mathrm{10}{x}_{\mathrm{9}} +\mathrm{1} \\ $$$${after}\:{rearranging}\:{and}\:{reasoning} \\ $$$${like}\:{this}\:{one}\::− \\ $$$$\mathrm{7}{x}_{\mathrm{6}} =\mathrm{10}{x}_{\mathrm{9}} +\mathrm{3}=\mathrm{7}{x}_{\mathrm{9}} +\mathrm{3}\left({x}_{\mathrm{9}} +\mathrm{1}\right) \\ $$$${x}_{\mathrm{6}} ={x}_{\mathrm{9}} +\mathrm{3}×\frac{{x}_{\mathrm{9}} +\mathrm{1}}{\mathrm{7}} \\ $$$$\because\:{n}\:{is}\:{natural}\:{no}.\: \\ $$$$\therefore{x}_{\mathrm{6}} \in\mathbb{Z}\: \\ $$$$\therefore\:{x}_{\mathrm{9}} +\mathrm{1}\:{is}\:{a}\:{multiple}\:{of}\:\mathrm{7} \\ $$$${so},\:{i}\:{get} \\ $$$${x}_{\mathrm{9}} +\mathrm{1}\:{is}\:{a}\:{multiple}\:{of}\:\:\mathrm{9},\mathrm{7}\:{and}\:\mathrm{4} \\ $$$${or}\:{x}_{\mathrm{9}} +\mathrm{1}\:{is}\:{a}\:{multiple}\:{of}\:\mathrm{252} \\ $$$${lowest}\:{value}\:{of}\:{x}_{\mathrm{9}} +\mathrm{1}=\mathrm{252} \\ $$$${x}_{\mathrm{9}} =\mathrm{251} \\ $$$${now},\:{at}\:{last}\:{putting}\:{the}\:{value}\:{of}\:{x}_{\mathrm{9}} \:{in}\:{n}=\mathrm{10}{x}_{\mathrm{9}} +\mathrm{9} \\ $$$${n}=\mathrm{10}×\mathrm{251}+\mathrm{9}=\mathrm{2519} \\ $$
Commented by $@ty@m last updated on 21/Feb/19
I didn′t do any of the above  calculations.  I simply remember the formula  given in Arithmetic book by  R.S. Agarwal  meant for preparation of competetive  examination.  You′d find many such useful  formulae (or tricks) there.
$${I}\:{didn}'{t}\:{do}\:{any}\:{of}\:{the}\:{above} \\ $$$${calculations}. \\ $$$${I}\:{simply}\:{remember}\:{the}\:{formula} \\ $$$${given}\:{in}\:{Arithmetic}\:{book}\:{by} \\ $$$${R}.{S}.\:{Agarwal} \\ $$$${meant}\:{for}\:{preparation}\:{of}\:{competetive} \\ $$$${examination}. \\ $$$${You}'{d}\:{find}\:{many}\:{such}\:{useful} \\ $$$${formulae}\:\left({or}\:{tricks}\right)\:{there}. \\ $$
Commented by Kunal12588 last updated on 22/Feb/19
great sir. thanks once more
$${great}\:{sir}.\:{thanks}\:{once}\:{more} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *