Question Number 55820 by ajfour last updated on 04/Mar/19
Commented by ajfour last updated on 04/Mar/19
$${Help}\:{determining}\:{radius}\:{of}\:{circle}! \\ $$
Commented by mr W last updated on 04/Mar/19
$${i}\:{think}\:{the}\:{circle}\:{is}\:{not}\:{unique}\:{if}\:{only} \\ $$$${c}\:{is}\:{given}. \\ $$
Commented by mr W last updated on 04/Mar/19
Commented by ajfour last updated on 04/Mar/19
$${please}\:{convince}\:.. \\ $$
Commented by ajfour last updated on 04/Mar/19
Commented by ajfour last updated on 04/Mar/19
$${Sir}\:{i}\:{am}\:{trying}\:{an}\:{alternative} \\ $$$${to}\:{Cardano}\:{formula}\:{or}\:{obtain}\:{the} \\ $$$${same}\:{from}\:{geometry},\:{for}\:{the}\: \\ $$$${equation}\:\:\:{x}^{\mathrm{3}} +{x}=\mathrm{2}{c}\:\:\:\left({here}\right). \\ $$$${please}\:{support}. \\ $$$${If}\:{we}\:{find}\:{R},\:\:\:\left({x}^{\mathrm{2}} +\mathrm{1}\right)=\:\mathrm{2}\sqrt{{R}^{\mathrm{2}} −{c}^{\mathrm{2}} }\:. \\ $$$${In}\:{diagram}\:\:{x}={FG}. \\ $$
Commented by ajfour last updated on 04/Mar/19
$${thank}\:{you}\:{Sir},\:{but}\:{we}\:{have}\:\mathrm{1}\:{now}. \\ $$