Menu Close

Question-55933




Question Number 55933 by Gulay last updated on 06/Mar/19
Commented by Gulay last updated on 06/Mar/19
sir could you help me
$$\mathrm{sir}\:\mathrm{could}\:\mathrm{you}\:\mathrm{help}\:\mathrm{me} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 07/Mar/19
a=((√2)−1)  a^2 =2−2(√2) +1  a^2 =3−2(√2)   now log_(3−2(√2) )  25  =b  (3−2(√2) )^b =5^2   ((√2) −1)^(2b) =5^2   ((√2) −1)^b =5  b=log_(((√2)−1)) 5  now  log_(((√2) −1)) (x−2)>log_(((√2) −1)) 5  (x−2)>5←it is wrong so correct is  (x−2)<5    x<7
$${a}=\left(\sqrt{\mathrm{2}}−\mathrm{1}\right) \\ $$$${a}^{\mathrm{2}} =\mathrm{2}−\mathrm{2}\sqrt{\mathrm{2}}\:+\mathrm{1} \\ $$$${a}^{\mathrm{2}} =\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\: \\ $$$${now}\:{log}_{\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\:} \:\mathrm{25}\:\:={b} \\ $$$$\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\:\right)^{{b}} =\mathrm{5}^{\mathrm{2}} \\ $$$$\left(\sqrt{\mathrm{2}}\:−\mathrm{1}\right)^{\mathrm{2}{b}} =\mathrm{5}^{\mathrm{2}} \\ $$$$\left(\sqrt{\mathrm{2}}\:−\mathrm{1}\right)^{{b}} =\mathrm{5} \\ $$$${b}={log}_{\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)} \mathrm{5} \\ $$$${now} \\ $$$${log}_{\left(\sqrt{\mathrm{2}}\:−\mathrm{1}\right)} \left({x}−\mathrm{2}\right)>{log}_{\left(\sqrt{\mathrm{2}}\:−\mathrm{1}\right)} \mathrm{5} \\ $$$$\left({x}−\mathrm{2}\right)>\mathrm{5}\leftarrow{it}\:{is}\:{wrong}\:{so}\:{correct}\:{is} \\ $$$$\left({x}−\mathrm{2}\right)<\mathrm{5} \\ $$$$ \\ $$$${x}<\mathrm{7} \\ $$
Commented by Gulay last updated on 06/Mar/19
thanks sir
$$\mathrm{thanks}\:\mathrm{sir} \\ $$
Commented by MJS last updated on 07/Mar/19
there′s a mistake of sign somewhere
$$\mathrm{there}'\mathrm{s}\:\mathrm{a}\:\mathrm{mistake}\:\mathrm{of}\:\mathrm{sign}\:\mathrm{somewhere} \\ $$
Commented by MJS last updated on 07/Mar/19
...it happened between the red and black lines  at the end: (√2)−1<1 ⇒ log_((√2)−1) t <0 for t>1  so the > changes to <
$$…\mathrm{it}\:\mathrm{happened}\:\mathrm{between}\:\mathrm{the}\:\mathrm{red}\:\mathrm{and}\:\mathrm{black}\:\mathrm{lines} \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{end}:\:\sqrt{\mathrm{2}}−\mathrm{1}<\mathrm{1}\:\Rightarrow\:\mathrm{log}_{\sqrt{\mathrm{2}}−\mathrm{1}} {t}\:<\mathrm{0}\:\mathrm{for}\:{t}>\mathrm{1} \\ $$$$\mathrm{so}\:\mathrm{the}\:>\:\mathrm{changes}\:\mathrm{to}\:< \\ $$$$ \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 07/Mar/19
yes sir you are right...thank you sir..
$${yes}\:{sir}\:{you}\:{are}\:{right}…{thank}\:{you}\:{sir}.. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 07/Mar/19
Answered by MJS last updated on 07/Mar/19
((ln (x−2))/(ln ((√2)−1)))>((ln 25)/(ln (3−2(√2))))       [25=5^2 ; 3−2(√2)=((√2)−1)^2 ]  ((ln (x−2))/(ln ((√2)−1)))>((2ln 5)/(2ln ((√(2−1)))))       [0<(√2)−1<1 ⇒ ln ((√2)−1)<0]  ln (x−2)<ln 5  x−2<5  x<7
$$\frac{\mathrm{ln}\:\left({x}−\mathrm{2}\right)}{\mathrm{ln}\:\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)}>\frac{\mathrm{ln}\:\mathrm{25}}{\mathrm{ln}\:\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right)} \\ $$$$\:\:\:\:\:\left[\mathrm{25}=\mathrm{5}^{\mathrm{2}} ;\:\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}=\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{2}} \right] \\ $$$$\frac{\mathrm{ln}\:\left({x}−\mathrm{2}\right)}{\mathrm{ln}\:\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)}>\frac{\mathrm{2ln}\:\mathrm{5}}{\mathrm{2ln}\:\left(\sqrt{\mathrm{2}−\mathrm{1}}\right)} \\ $$$$\:\:\:\:\:\left[\mathrm{0}<\sqrt{\mathrm{2}}−\mathrm{1}<\mathrm{1}\:\Rightarrow\:\mathrm{ln}\:\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)<\mathrm{0}\right] \\ $$$$\mathrm{ln}\:\left({x}−\mathrm{2}\right)<\mathrm{ln}\:\mathrm{5} \\ $$$${x}−\mathrm{2}<\mathrm{5} \\ $$$${x}<\mathrm{7} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *