Menu Close

Question-56037




Question Number 56037 by ajfour last updated on 08/Mar/19
Commented by ajfour last updated on 08/Mar/19
Find maximum area of inner  triangle if outer one is equilateral.
Findmaximumareaofinnertriangleifouteroneisequilateral.
Commented by mr W last updated on 08/Mar/19
is it not when inner triangle is equal  to the outer one?
isitnotwheninnertriangleisequaltotheouterone?
Commented by 121194 last updated on 08/Mar/19
are you sure there not any additional condition there?
areyousuretherenotanyadditionalconditionthere?
Commented by ajfour last updated on 08/Mar/19
a, b, c are not equal.
a,b,carenotequal.
Commented by mr W last updated on 09/Mar/19
thank you for clarifing sir!  a,b,c are given and there are many  cases, so the question is hard.
thankyouforclarifingsir!a,b,caregivenandtherearemanycases,sothequestionishard.
Answered by ajfour last updated on 11/Mar/19
let side of equilateral △ be s.  ⇒  3s=a+b+c  let bottom segments be x and s−x.  The right side segments are   c−s+x and 2s−x−c.  The left side segments are    s−b+x, and  b−x.  For the inner △ area to be maximum,  The remaining area has to be  minimum.  The blue area   A=(1/2)sin 60°[x(b−x)+(s−x)(c−s+x)                 +(2s−c−x)(s−b+x)  (dA/dx)=((√3)/4)[(b−x−x)+(−c+s−x+s          −x)+(−s+b−x+2s−c−x) ]= 0  ⇒  3s−6x+2b−2c = 0       (a+b+c)+2b−2c = 6x  ⇒   x_0 =((a+3b−c)/6)    (d^2 A/dx^2 )= −6  ⇒ A is maximum for                  x_0 =((a+3b−c)/6) .  ⇒   b−x = ((−a+3b+c)/6)  Minimum inner △ area A is       =((√3)/(36))(a+b+c)^2 −((3(√3))/4)(((9b^2 −(c−a)^2 )/(36)))     =((√3)/(36))(a+b+c)^2 − (((√3)[9b^2 −(c−a)^2 ])/(48)) .
letsideofequilateralbes.3s=a+b+cletbottomsegmentsbexandsx.Therightsidesegmentsarecs+xand2sxc.Theleftsidesegmentsaresb+x,andbx.Fortheinnerareatobemaximum,Theremainingareahastobeminimum.TheblueareaA=12sin60°[x(bx)+(sx)(cs+x)+(2scx)(sb+x)dAdx=34[(bxx)+(c+sx+sx)+(s+bx+2scx)]=03s6x+2b2c=0(a+b+c)+2b2c=6xx0=a+3bc6d2Adx2=6Aismaximumforx0=a+3bc6.bx=a+3b+c6MinimuminnerareaAis=336(a+b+c)2334(9b2(ca)236)=336(a+b+c)23[9b2(ca)2]48.
Commented by mr W last updated on 10/Mar/19
very nice sir! is this the mininum  inner triangle or the maximum?
verynicesir!isthisthemininuminnertriangleorthemaximum?
Commented by ajfour last updated on 11/Mar/19
unfortunately its the minimum  area Sir!
unfortunatelyitstheminimumareaSir!

Leave a Reply

Your email address will not be published. Required fields are marked *