Menu Close

Question-56384




Question Number 56384 by Gulay last updated on 15/Mar/19
Commented by Gulay last updated on 15/Mar/19
sir plz help me
$$\mathrm{sir}\:\mathrm{plz}\:\mathrm{help}\:\mathrm{me} \\ $$
Commented by mr W last updated on 16/Mar/19
α,β=roots  α=(√(10))+4  αβ=6  ⇒β=(6/( (√(10))+4))=((6(4−(√(10))))/(4^2 −10))=4−(√(10))  C=−(α+β)=−((√(10))+4+4−(√(10)))=−8
$$\alpha,\beta={roots} \\ $$$$\alpha=\sqrt{\mathrm{10}}+\mathrm{4} \\ $$$$\alpha\beta=\mathrm{6} \\ $$$$\Rightarrow\beta=\frac{\mathrm{6}}{\:\sqrt{\mathrm{10}}+\mathrm{4}}=\frac{\mathrm{6}\left(\mathrm{4}−\sqrt{\mathrm{10}}\right)}{\mathrm{4}^{\mathrm{2}} −\mathrm{10}}=\mathrm{4}−\sqrt{\mathrm{10}} \\ $$$${C}=−\left(\alpha+\beta\right)=−\left(\sqrt{\mathrm{10}}+\mathrm{4}+\mathrm{4}−\sqrt{\mathrm{10}}\right)=−\mathrm{8} \\ $$
Answered by MJS last updated on 15/Mar/19
x^2 +cx+6=0  x=−(c/2)±((√(c^2 −24))/2)  −(c/2)=4 ⇒ c=−8  ((√(c^2 −24))/2)=(√(10)) ⇒ c=±8  ⇒ c=−8  ⇒ the other solution is 4−(√(10))    (x−x_1 )(x−x_2 )=(x−4−(√(10)))(x−4+(√(10)))=  =x^2 −8x+6
$${x}^{\mathrm{2}} +{cx}+\mathrm{6}=\mathrm{0} \\ $$$${x}=−\frac{{c}}{\mathrm{2}}\pm\frac{\sqrt{{c}^{\mathrm{2}} −\mathrm{24}}}{\mathrm{2}} \\ $$$$−\frac{{c}}{\mathrm{2}}=\mathrm{4}\:\Rightarrow\:{c}=−\mathrm{8} \\ $$$$\frac{\sqrt{{c}^{\mathrm{2}} −\mathrm{24}}}{\mathrm{2}}=\sqrt{\mathrm{10}}\:\Rightarrow\:{c}=\pm\mathrm{8} \\ $$$$\Rightarrow\:{c}=−\mathrm{8} \\ $$$$\Rightarrow\:\mathrm{the}\:\mathrm{other}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{4}−\sqrt{\mathrm{10}} \\ $$$$ \\ $$$$\left({x}−{x}_{\mathrm{1}} \right)\left({x}−{x}_{\mathrm{2}} \right)=\left({x}−\mathrm{4}−\sqrt{\mathrm{10}}\right)\left({x}−\mathrm{4}+\sqrt{\mathrm{10}}\right)= \\ $$$$={x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{6} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *