Question Number 56390 by Tinkutara last updated on 15/Mar/19
Commented by Tinkutara last updated on 18/Mar/19
Answer is
Commented by Tinkutara last updated on 18/Mar/19
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Mar/19
$${A}\left(\mathrm{1},\mathrm{2}\right)\:\:{B}\left(\sqrt{\mathrm{5}\:}\:{cos}\theta,\sqrt{\mathrm{5}}\:{sin}\theta\right)\:\:{C}\left(\sqrt{\mathrm{5}}\:{sin}\theta,−\sqrt{\mathrm{5}}\:{cos}\theta\right) \\ $$$${slope}\:{of}\:{AB}\:\rightarrow{m}_{\mathrm{1}} =\frac{\sqrt{\mathrm{5}}\:{sin}\theta−\mathrm{2}}{\:\sqrt{\mathrm{5}}\:{cos}\theta−\mathrm{1}} \\ $$$${slope}\:{BC}\rightarrow{m}_{\mathrm{2}} =\frac{\sqrt{\mathrm{5}}\:{sin}\theta+\sqrt{\mathrm{5}}\:{cos}\theta}{\:\sqrt{\mathrm{5}}\:{cos}\theta−\sqrt{\mathrm{5}}\:{sin}\theta}=\frac{\mathrm{1}+{tan}\theta}{\mathrm{1}−{tan}\theta}={tan}\left(\frac{\pi}{\mathrm{4}}+\theta\right) \\ $$$${slope}\:{of}\:{CA}\rightarrow{m}_{\mathrm{3}} =\frac{\mathrm{2}+\sqrt{\mathrm{5}}\:{cos}\theta}{\mathrm{1}−\sqrt{\mathrm{5}}\:{sin}\theta} \\ $$$${eqn}\:{st}\:{line}\:\bot{BC}\:{and}\:{passing}\:{through} \\ $$$${eqn}\:{AD}\bot{BC}\:\:\left({y}−\mathrm{2}\right)=\left(\frac{−\mathrm{1}}{{m}_{\mathrm{2}} }\right)\left({x}−\mathrm{1}\right) \\ $$$$\left({y}−\mathrm{2}\right)=\left(\frac{{tan}\theta−\mathrm{1}}{{tan}\theta+\mathrm{1}}\right)\left({x}−\mathrm{1}\right) \\ $$$${eqn}\:{BE}\bot{AC} \\ $$$$\left({y}−\sqrt{\mathrm{5}}\:{sin}\theta\right)=−\left(\frac{\mathrm{1}}{{m}_{\mathrm{3}} }\right)\left({x}−\sqrt{\mathrm{5}}\:{cos}\theta\right) \\ $$$$\left({y}−\sqrt{\mathrm{5}}\:{sin}\theta\right)=\left(\frac{\sqrt{\mathrm{5}}\:{sin}\theta−\mathrm{1}}{\mathrm{2}+\sqrt{\mathrm{5}}\:{cos}\theta}\right)\left({x}−\sqrt{\mathrm{5}}\:{cos}\theta\right) \\ $$$${solving}\:{eqn}\:{AD}\:{and}\:{BE}\:{we}\:{get}\:{ortho}\:{centre} \\ $$$$\mathrm{2}+\left(\frac{{tan}\theta−\mathrm{1}}{{tan}\theta+\mathrm{1}}\right)\left({x}−\mathrm{1}\right)=\sqrt{\mathrm{5}}\:{sin}\theta+\left(\frac{\sqrt{\mathrm{5}}\:{sin}\theta−\mathrm{1}}{\mathrm{2}+\sqrt{\mathrm{5}}\:{cos}\theta}\right)\left({x}−\sqrt{\mathrm{5}}\:{cos}\theta\right) \\ $$$${for}\:{easy}\:{of}\:{simplificatiin}\:\sqrt{\mathrm{5}}\:{sin}\theta={a} \\ $$$$\sqrt{\mathrm{5}}\:{cos}\theta={b}\:\:\:{tan}\theta=\frac{{a}}{{b}} \\ $$$$\mathrm{2}+\left(\frac{\frac{{a}}{{b}}−\mathrm{1}}{\frac{{a}}{{b}}+\mathrm{1}}\right)\left({x}−\mathrm{1}\right)={a}+\left(\frac{{a}−\mathrm{1}}{\mathrm{2}+{b}}\right)\left({x}−{b}\right) \\ $$$$\mathrm{2}+{x}\left(\frac{{a}−{b}}{{a}+{b}}\right)−\left(\frac{{a}−{b}}{{a}+{b}}\right)={a}+{x}\left(\frac{{a}−\mathrm{1}}{\mathrm{2}+{b}}\right)−{b}\left(\frac{{a}−\mathrm{1}}{\mathrm{2}+{b}}\right) \\ $$$${x}\left\{\left(\frac{{a}−{b}}{{a}+{b}}\right)−\left(\frac{{a}−\mathrm{1}}{\mathrm{2}+{b}}\right)\right\}={a}−{b}\left(\frac{{a}−\mathrm{1}}{\mathrm{2}+{b}}\right)−\mathrm{2}+\frac{{a}−{b}}{{a}+{b}} \\ $$$${x}\left\{\frac{\mathrm{2}{a}−\mathrm{2}{b}+{ab}−{b}^{\mathrm{2}} −{a}^{\mathrm{2}} −{ab}+{a}+{b}}{\left({a}+{b}\right)\left(\mathrm{2}+{b}\right.}\right\}=\frac{{a}\left(\mathrm{2}{a}+\mathrm{2}{b}+{ab}+{b}^{\mathrm{2}} \right)−{b}\left({a}^{\mathrm{2}} +{ab}−{a}−{b}\right)−\mathrm{2}\left(\mathrm{2}{a}+\mathrm{2}{b}+{ab}+{b}^{\mathrm{2}} \right)+\left(\mathrm{2}{a}+{ab}−\mathrm{2}{b}−{b}^{\mathrm{2}} \right)}{\left(\mathrm{2}+{b}\right)\left({a}+{b}\right)} \\ $$$${x}\left(\mathrm{3}{a}−{b}−{b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)=\mathrm{4}{a}+\mathrm{4}{b}+{a}^{\mathrm{2}} {b}+{ab}^{\mathrm{2}} −{a}^{\mathrm{2}} {b}−{ab}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} −\mathrm{4}{a}−\mathrm{4}{b}−\mathrm{2}{ab}−{b}^{\mathrm{2}} +\mathrm{2}{a}+{ab}−\mathrm{2}{b}−{b}^{\mathrm{2}} \\ $$$${x}\left(\mathrm{3}{a}−{b}−{b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)=\mathrm{2}{a}−\mathrm{2}{b}+{ab}+{b}^{\mathrm{2}} −\mathrm{2}{ab}−{b}^{\mathrm{2}} +{ab}−{b}^{\mathrm{2}} \\ $$$${x}\left(\mathrm{3}{a}−{b}−{b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)=\mathrm{2}{a}−\mathrm{2}{b}−{b}^{\mathrm{2}} \\ $$$${x}=\frac{\mathrm{2}{a}−\mathrm{2}{b}−{b}^{\mathrm{2}} }{\mathrm{3}{a}−{b}−{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\:\:\left[{a}=\sqrt{\mathrm{5}}\:{sin}\theta\:\:\:{b}=\sqrt{\mathrm{5}}\:{cos}\theta\right] \\ $$$${pls}\:{check}\:{upto}\:{this}\:{lengthy}\:{question}… \\ $$